
Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências

Faculdade de Engenharia

Anny Caroline Correa Chagas

Evaluation of transparent energy-saving mechanisms in

embedded applications

Rio de Janeiro

2021

Anny Caroline Correa Chagas

Evaluation of transparent energy-saving mechanisms in embedded

applications

Dissertação apresentada, como requisito
parcial para obtenção do t́ıtulo de Mestre
em Ciências, ao Programa de Pós-Graduação
em Engenharia Eletrônica, da Universidade
do Estado do Rio de Janeiro. Área de
concentração: Redes de Telecomunicações.

Orientador: Prof. D.Sc. Francisco Sant’Anna

Rio de Janeiro

2021

CATALOGAÇÃO NA FONTE

UERJ / REDE SIRIUS / BIBLIOTECA CTC/B

Bibliotecária: Júlia Vieira – CRB7/6022

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou

parcial desta tese, desde que citada a fonte.

Assinatura Data

C433 Chagas, Anny Caroline Correa.
Evaluation of transparent energy-saving mechanisms in

embedded application / Anny Caroline Correa Chagas. – 2021.
69f.

Orientador: Francisco Figueiredo Goytacaz Sant'Anna.
Dissertação (Mestrado) – Universidade do Estado do Rio de

Janeiro, Faculdade de Engenharia.

1. Engenharia eletrônica - Teses. 2. Sistemas embarcados
(Computadores) - Teses. 3. Arduino (Controlador programável) -
Teses. 4. Computadores digitais - Programação - Teses. I.
Sant’Anna, Francisco Figueiredo Goytacaz. II. Universidade do
Estado do Rio de Janeiro, Faculdade de Engenharia. III. Título.

CDU 004.031.6

Anny Caroline Correa Chagas

Evaluation of transparent energy-saving mechanisms in embedded

applications

Dissertação apresentada, como requisito
parcial para obtenção do t́ıtulo de Mestre
em Ciências, ao Programa de Pós-Graduação
em Engenharia Eletrônica, da Universidade
do Estado do Rio de Janeiro. Área de
concentração: Redes de Telecomunicações.

Aprovado em: 12 de novembro de 2021

Banca Examinadora:

Prof. Francisco Sant’Anna (Orientador)

PEL/UERJ

Prof. Alexandre Sztajnberg

PEL/UERJ

Prof. Noemi de La Roque Rodriguez

Departamento de informática – PUC-Rio

Rio de Janeiro

2021

AGRADECIMENTO

Gostaria de agradecer ao meu orientador prof. Francisco Sant’Anna por todo o

incentivo, ensinamentos e oportunidades. Agradeço também ao prof. Alexandre Sztajn-

berg pela minha passagem no Laboratório de Ciência da Computação (LCC/IME) e sua

orientação durante o bacharelado.

RESUMO

CHAGAS, Anny Caroline Correa. Avaliação de mecanismos transparentes de econo-

mia de energia em aplicações embarcadas. 69 f. Dissertação (Mestrado em Engenharia

Eletrônica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro (UERJ),

Rio de Janeiro, 2021.

Durante o desenvolvimento de um dispositivo embarcado, a tarefa de gerenciar os

modos de economia de energia é normalmente delegada aos desenvolvedores das aplicações,

principalmente quando o dispositivo possui recursos limitados e não há um sistema opera-

cional. Essa abordagem acaba por tornar a aplicação dif́ıcil de ler e escrever e exigir um

grande conhecimento sobre os hardwares utilizados. Em contrapartida, o gerenciamento

de energia de dispositivos embarcados pode reduzir significativamente seu consumo e pro-

longar a vida útil de baterias. Nesse contexto, avaliamos o uso dos mecanismos transpar-

entes de gerenciamento de energia da linguagem de programação Céu no desenvolvimento

de aplicações embarcadas com recursos limitados. A semântica śıncrona de Céu garante

que reações ao ambiente sempre alcancem um estado ocioso, no qual a linguagem pode

aplicar o modo de economia mais eficiente posśıvel para cada hardware utilizado. A fim

de avaliar a viabilidade de uso dessa linguagem, comparamos implementações em Céu e

em Arduino de duas aplicações t́ıpicas: um sistema de iluminação inteligente e um dispos-

itivo de coleta de dados de sensores. Para apoiar a implementação das aplicações em Céu,

desenvolvemos drivers cientes de energia para as classes de sensores digitais e analógicos,

além de um driver espećıfico para o sensor de temperatura e umidade DHT11. Em am-

bas as aplicações as implementações em Céu se mostraram mais eficientes em relação

ao consumo de energia em pelo menos 30%, com a penalidade do aumento de uso de

memória. O aumento no uso de memória se mostrou significativo em uma das aplicações

e indica uma limitação para a adoção da linguagem neste contexto. Em contrapartida, as

implementações em Céu apresentaram uma melhor legibilidade.

Palavras-chave: Sistemas Embarcados. Economia de energia. Arduino. Programação

reativa.

ABSTRACT

CHAGAS, Anny Caroline Correa. Evaluation of transparent energy-saving mechanisms

in embedded applications. 69 f. Dissertação (Mestrado em Engenharia Eletrônica) - Fac-

uldade de Engenharia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro,

2021.

During the development of an embedded device, the task of managing power-saving

modes is usually delegated to the application developers, especially when a device has lim-

ited resources and there isn’t an operating system. This approach produces applications

that are harder to read and write and requires developers to know more about the hard-

ware used. In contrast, the power management of embedded devices can significantly

reduce power consumption and extend battery life. In this context, we propose the use of

transparent energy saving mechanisms of Céu programming language in the development

of resource-constrained embedded applications. Its synchronous semantics ensures that

reactions to the environment always reach an idle state, in which the language can apply

the most efficient power mode for each hardware used. In order to evaluate the use of

this language, we compared implementations in Céu and Arduino of two applications: an

smart lighting system and a sensor data collection device. To support the implementation

of the Céu applications, we have developed energy-aware drivers for digital and analog

sensors, as well as a specific driver for the DHT11 temperature and humidity sensor. In

both applications, the implementations in Céu proved to be more efficient in terms of

energy consumption by at least 30%, with a penalty on increased memory usage. The

increase in memory usage was significant in one of the applications and indicates a limi-

tation for the adoption of the language in this context. In contrast, implementations in

Céu showed better readability.

Palavras-chave: Embedded systems. Energy saving. Arduino. Reactive programming.

LIST OF FIGURES

Figure 1 Turning hardware on and off via MCU .. 14

Figure 2 Mini Ultra 8 MHz by Rocket Scream . 17

Figure 3 Céu program interacting with real world thought an environment. Based

at: https://ceu-lang.github.io/ceu/out/manual/v0.30 . 18

Figure 4 Circuit of the application that blinks an LED every second until a inter-

rupt is received . 21

Figure 5 Measuring current using a multimeter . 30

Figure 6 Multimeter range settings . 31

Figure 7 Pliers ammeter . 31

Figure 8 Oscilloscope . 32

Figure 9 Current waveform analyzer . 32

Figure 10 DC power supplies . 33

Figure 11 Arduino based current meter . 33

Figure 12Memory usage information provided by the Arduino compiler 35

Figure 13 d-sensor application circuit . 41

Figure 14 DHT11 humidity and temperature sensor in a breakout board connected

to the Mini Ultra prototyping board . 44

Figure 15 Start of the communication between a microcontroller and a DHT11 sensor 45

Figure 16 DHT sends data to microcontroller . 45

Figure 17 Simplified schematic of TX device . 48

Figure 18 RX application states . 52

Figure 19 Simplified schematic of RX device . 52

Figure 20 Hardware used in the second application . 59

Figure 21 Circuit of humidity and moisture sensor device . 60

LIST OF TABLES

Table 1 ATmega328/p sleep modes and their main wake-up sources 13

Table 2 HC-05 power consumption . 47

Table 3 Power consumption of the smart lighting TX application . 50

Table 4 Memory usage of the smart lighting TX application . 51

Table 5 Memory usage of the smart lighting RX application . 57

Table 6 Power consumption of the smart lighting RX application . 57

Table 7 Power consumption of the humidity and moisture sensor node 62

Table 8 Memory usage of the humidity and moisture sensor node. 62

SUMMARY

INTRODUCTION . 10

1 SAVING ENERGY ON EMBEDDED DEVICES . 12

1.1 Hardware power saving mechanisms . 12

1.2 Turning hardware off when not in use . 14

1.3 Other mechanisms . 15

1.4 Energy savings in embedded Operating Systems . 15

1.5 Prototyping boards . 16

1.6 Power saving techniques used in this dissertation . 17

2 THE PROGRAMMING LANGUAGE CÉU . 18

2.1 Interrupts and drivers . 19

2.2 Power management mechanism . 23

3 METHODOLOGY . 25

3.1 Choosing the applications . 25

3.2 Applications implementations . 26

3.3 Power consumption analysis . 27

3.3.1 Power comparison . 29

3.3.2 Measuring instruments . 29

3.3.3 Instruments used in this work. 34

3.4 Memory consumption analysis . 34

3.5 Readability comparison . 35

3.5.1 Related works . 36

3.5.2 The chosen approach . 37

4 DEVELOPED DRIVERS . 40

4.1 Driver d-sensor . 40

4.2 Driver a-sensor . 43

4.3 Driver dht 11. 44

5 COMPARISON OF APPLICATIONS IN CÉU AND ARDUINO 47

5.1 Smart lighting . 47

5.1.1 TX application . 48

5.1.2 RX application . 51

5.2 Humidity and moisture sensor device . 59

CONCLUSÃO . 64

REFERÊNCIAS . 65

10

INTRODUCTION

Embedded software is characterized by running on devices that are not typically

known as computers (e.g. microwaves, watches, cars, toys, etc.). Unlike general purpose

computers, in embedded devices both software and hardware are designed to perform a

specific predefined task. Because of this, it’s possible to choose more specific hardware,

minimizing costs and allowing the device to have a smaller physical size [1].

Although these devices are often battery-powered, most embedded programming

languages and operating systems don’t provide automatic energy saving mechanisms. In

order to improve energy efficiency, application developers have to implement saving mech-

anisms manually. This task is often complicated and error-prone, and produces a software

that is harder to read and write. However, it’s indispensable for many projects, as it can

make an application execute for a longer period of time using the same battery [2] [3] [4].

For embedded devices connected to power grid, the power consumption is usually

not such a concern. In fact, they don’t consume as much energy as other elements

connected to the power grid (e.g. home appliances, heating system etc.). However, if

we analyze it globally and consider that the number of these devices tends to grow in the

coming years, the energy and environmental impact becomes considerable [5].

Regardless of how they are powered, embedded devices tend to remain idle for

long periods of the time. Ideally, these devices should enter the deepest standby mode

during idle periods, avoiding wasting energy. Nevertheless, identifying idle periods and

inferring the most efficient power saving mode is not always simple. On connected devices

(as the ones that use radios), energy efficiency during idle periods tends to be even more

complicated, as more hardware resources typically remain on. These reasons have made

standby for connected devices one of the six pillars of the G20 Energy Efficiency Action

Plan [6].

In this context, the present work proposes to evaluate the usage of the program-

ming language Céu [7] in the development of embedded applications. The language has

been developed during the last 12 years and already has a stable implementation, being

successfully adopted in the areas of wireless networks [8] [9], games [10] [11] and multime-

dia [12]. Due to its synchronous model, any application written in Céu always reaches an

idle state susceptible to energy savings. With this, the language can identify which parts

11

of the hardware should remain active in each idle period, and apply the best energy saving

mode automatically. Previous works already presented their power-manage mechanism

and propose their evaluation [13] [4].

Objectives

The main objective of this work is to evaluate the energy consumption of realistic

applications written in Céu and compare them with implementations in Arduino, as sug-

gested in a previous work [4]. Code readability and memory usage were also evaluated

to discuss language adoption barriers. This dissertation also discusses how to measure

the energy consumption of embedded devices and compare the readability of applications

written in two different programming languages. The developed applications are:

• An smart lighting system consisting of two devices, a transmitter and a receiver,

that communicate via Bluetooth. To assist its implementation, we developed the

d-sensor driver, which allows a digital sensor to be turned on only when in use,

improving the energy efficiency of the device.

• A device that collects air humidity and soil moisture, and transmits this informa-

tion via radio using the nRF24l01+ transceiver. We developed the driver dht11 to

retrieve air humidity from the sensor DHT11, and the driver a-sensor to read the

soil moisture from an analog sensor. Analogous to the d-sensor driver, the a-sensor

turns off the sensor when not in use.

Dissertation organization

The rest of the dissertation is organized as follows: Chapter 1 introduces different

techniques to save energy on embedded devices, emphasizing automatic use of standby

in SO-less resource-constrained embedded architectures. Chapter 2 introduces the pro-

gramming language Céu and its power management runtime. Chapter 3 presents the

methodology used in this work and discusses how to measure the embedded devices energy

consumption and how to compare readability. Chapter 4 details the developed drivers and

Chapter 5 compares applications written in Céu and Arduino, remarking code readability,

energy consumption and memory usage.

12

1 SAVING ENERGY ON EMBEDDED DEVICES

This chapter discusses the main energy saving techniques used in embedded de-

vices, and is organized as follows. Section 1.1 presents power saving mechanisms provided

by different hardware, such as sensors, actuators, microcontrollers (MCUs) and radio

transceivers. Section 1.2 explores the technique of completely turning off part of the de-

vice’s hardware when not in use. Section 1.3 presents other saving techniques, such as

adjusting the quality of service (QoS) and disabling application functionalities. It also

discusses network protocols that aim to save power.

Section 1.4 comments about how some embedded operating systems (OSs) deal

with energy savings. Section 1.5 discusses the usage of prototyping boards and its im-

pact on power consumption. Finally, Section 1.6 elucidates the techniques used in this

dissertation and finalizes the chapter.

1.1 Hardware power saving mechanisms

Saving energy on embedded devices requires both software and hardware efforts.

When choosing which hardware (sensor, actuators, microcontroller, etc.) to use, develop-

ers should analyze their consumption and if they have power saving mechanisms.

Some hardware control their own power saving modes. An example is the DHT11

humidity and temperature sensor, which remains sleeping until it receives a signal re-

questing a measurement [14]. The radio transceiver nRF24l01+ has a similar behavior

when acting as a transmitter. It remains in a sleep mode until it’s time to transmit a

message [15].

Instead of managing their own energy-saving states, some hardware delegates this

task to the application. The gy-521 module is a good example. It’s a breakout board that

encapsulates the integrated circuit MPU-6050 and features a gyroscope and accelerom-

eter [16]. This module has two power saving modes: in the most economical one, the

MPU-6050 is sleeping and almost completely turned off. Only the I2C hardware remains

on, as it’s responsible for the module’s communication with the MCU where the applica-

tion is running. This way, the application can wake up the module even when it’s sleeping.

In its least economical mode (a.k.a cycle mode), the MPU-6050 wakes up from time to

time to perform an accelerometer measurement [17]. The application can choose to use

13

one of these modes by manipulating MPU-6050 registers.

MCUs are also a good example of hardware that has its power consumption man-

aged by the application. In general, an MCU provides sleep modes. To choose each sleep

mode to use, the developer should consider which resources should remain on during

sleep, and its wake-up sources, i.e., which events can wake up the microcontroller. Some

common events are external interrupts and timers.

The ATmega328/P is a MCU widely used in the Arduino community. It has six

sleep modes as shown in Table 1. Among them, “power down” is the most economical

mode, while “idle” is the most energy consuming. As an example, consider an application

that waits a presence detection to turn on an LED. In this case, the ATmega328/P can

enter into the deepest sleep mode while waiting 1. On the other hand, if the application

is waiting to receive a message via SPI interface instead of a presence detection, the

microcontroller can’t go into “power down” mode, because the SPI circuit is disabled in

it. Alternatively, the developer can choose the least economical mode, the “idle” mode.

Wake-up source

Sleep mode
INT and
PCINT

TWI Address
Match

Timer 1 Timer 2 SPI
SPM/EEPROM

Ready
ADC

Watch dog
timer

Idle Yes Yes Yes Yes Yes Yes Yes Yes
ADC noise reduction Yes Yes Yes Yes Yes Yes

Power-down Yes Yes Yes
Power-save Yes Yes Yes Yes

Standby Yes Yes Yes
Extended standby Yes Yes Yes Yes

Table 1: ATmega328/p sleep modes and their main wake-up sources

As the microcontroller usually consumes a lot of power when it’s active (i.e. when

not in a sleep mode), developers often prefer to keep sensors and peripheral hardware

active and wake up the microcontroller using them. Finally, it’s worth mentioning some

other characteristics that can influence the power consumption of a hardware.

• Operating voltage: embedded hardware usually works with different voltages

(usually 3.3V and/or 5V). In order to save energy, it’s better to choose a lower

voltage.

• Clock speed: in general, the lower the clock, the lower the consumption. In this

way, making MCUs run at a lower clock rate can save energy.

1For this to be possible, the presence detection sensor needs to be connected to the MCU through an
interrupt pin. This way, when a presence is detected, an interrupt (INT or PCINT) is generated and the
microcontroller can be woken up.

14

• Radio configurations: The size of the transmission radius is directly proportional

to its power consumption, as is the number of retransmission attempts.

1.2 Turning hardware off when not in use

Instead of using a power saving mode, there is the possibility of completely turning

off a hardware while it’s not in use. This is especially interesting when the hardware

doesn’t have any power saving modes. However, it’s important to consider how long the

application should wait before using the hardware after powering it on.

One way to implement this technique is to connect the hardware VCC to a MCU

digital output pin. In Figure 1(a), the ky-036 touch sensor is connected to pin 11 of the

MCU2. In this way, the application running on the MCU can turn on or off the hardware

using this pin.

(a) ky-036 touch sensor powered by a MCU
digital output pin

(b) Using a MOSFET transistor to turn on a
DC lamp that consumes a lot of current

Figure 1: Turning hardware on and off via MCU

The MCU pins have a limitation on the current they can supply, so not all hardware

can be powered this way. To control hardware that consumes more current, a MOSFET

transistor can be used as shown in Figure 1(b). However, most sensors used in embedded

software do not consume as much current, and the MOSFET ends up being more used to

control motors, LED strips and DC lamps.

2A prototyping board was used to facilitate the use of the MCU. The board used was the Mini Ultra
8MHz, compatible with the Arduino platform.

15

1.3 Other mechanisms

There are other saving techniques that do not aim at using sleep modes in idle pe-

riods, but by adjusting the quality of service (QoS) [18] of the application or its function-

alities to meet the demands of battery levels, for example, disabling certain features [19].

There are also network protocols aimed at energy saving, such as LoraWAN and Bluetooth

Low Energy [20]. However, these savings are restricted to parts related to the network,

not extending to sensors and actuators, for example.

1.4 Energy savings in embedded Operating Systems

When the software is responsible for applying energy saving techniques, this task

is usually performed manually by the application itself. It’s known as an error-prone

task, which affects the readability of the application and makes it difficult to maintain.

However, there is the possibility of using an embedded operating system. The OS can

facilitate the power management, or even provide automatic saving mechanisms. On the

downside, they often require more hardware resources. The following list comments about

some embedded OSs, and their main energy saving mechanisms.

• µCLINUX (and other UNIX based systems) doesn’t provide a native API to power

management, but some of their drivers provide some power management func-

tions [21].

• TinyOS is commonly used in wireless sensor networks and already has an automatic

power mechanism. Among the related works, this is the one that most resembles

the mechanism offered by the Céu language. However, TinyOS uses a complex

callback-based programming model. This complexity inspired previous works to

compare applications written in Céu and nesC, the language used in TinyOS. As a

result, Céu used 50% fewer lines of code, with a small increase in memory usage [22].

• Unlike TinyOS, Contiki does not offer automatic energy saving: applications are

responsible for saving energy by observing the size of the event queue. When there

are no events scheduled, the processor can sleep until an interrupt wakes it up [23].

It also provides power consumption estimates, which can be used by the app [24],

and has a duty cycle mechanism for wireless receivers called ContikiMAC. Wireless

16

receivers must remain turned on if any signal is received. As they consume a lot of

energy, the idea is to reduce their work cycles, keeping them in standby and waking

them up from time to time to receive some message. Obviously, this increases

the chance of missing messages, as the receiver can be in standby when a message

arrives, preventing it from receiving it. It’s up to the developer to decide how

often the receivers should be woken up in order to keep the network usable and save

energy. According to the literature, this mechanism allows saving something around

10% and 80%, depending on how often the transceivers are woken up [25].

1.5 Prototyping boards

As already mentioned, the choice of which hardware to use has a big impact on the

device’s power consumption. The developer has the option of building the entire device

manually, or using a prototyping board. Using a custom device is generally a cheaper

and more power economical option, as it uses only the necessary hardware. However, this

requires some knowledge in electronics.

An alternative is to use prototyping boards. They have become quite popular pre-

cisely for allowing the creation of embedded applications without the need of complicated

circuits. As the name suggests, they’re often used for prototyping, but it’s not uncommon

to see projects in production using one of these boards.

In this dissertation, we prefer to use a prototyping board to simplify the appli-

cations development. However, most of the prototyping boards available on the market

consumes a lot of energy, which ends up harming the visualization of power savings im-

plemented by the application. Because of this, we used the Mini Ultra 8 Mhz board from

Rocket Scream (Figure 2), which is an Arduino Pro mini compatible board that imple-

ments some hardware modifications to consume less energy. When choosing a low power

board, it’s also important to note its voltage and clock frequency. The smaller are these

values, the less is the power consumption.

Instead of using a custom board, like the Mini Ultra 8Mhz, it’s also possible to

modify an existing one. The most common modifications found in the Arduino community

are based at the Arduino Pro Mini, and reduce clock speed, remove indicator LEDs and

change the voltage regulator.

17

Figure 2: Mini Ultra 8 MHz by Rocket Scream

1.6 Power saving techniques used in this dissertation

The main power saving technique used in this dissertation is applying sleep modes

to device hardware during idle periods. To implement this technique, the software must

identify idle periods and apply the deepest sleep mode possible. Manually implementing

it is considered a complex and error-prone task, which justifies the need for automatic

and transparent mechanisms. In this context, we used the already existing power-saving

mechanism of the Céu programming language, and evaluate it by measuring the power

consumption. Also worth mentioning that TinyOS is a good alternative in this case.

However, it uses a callback-based programming model, that is known as complex.

Another technique used in this work is turn off device hardware while not in use.

We have implemented two drivers (d-sensor and a-sensor) that allow digital and analog

sensors (respectively) to be turned off automatically while not in use. As all the hardware

used could be powered directly by the prototyping board, we didn’t need to use MOSFET

transistors. At last, we also used hardware that manages power automatically, such as

the temperature and humidity sensor DHT11, the radio transceiver nRF24l01+ and the

Bluetooth module HC-05.

The use of techniques that adjust the QoS or functionalities of the application is

not the objective of this work, and neither of the Céu programming language. Energy

harvesting techniques, such as the use of solar panels, and energy-aware network protocols

are also outside the scope of this work.

18

2 THE PROGRAMMING LANGUAGE CÉU

Céu is a reactive programming language based on Esterel [26]. As a reactive

language, Céu requires an environment to communicate with the outside world and expose

input and output events that the applications can use [27].

Figure 3: Céu program interacting with real world thought an environment. Based at:
https://ceu-lang.github.io/ceu/out/manual/v0.30

Céu environments are developed separately from Céu core code, allowing the same

core to be used in different contexts. This dissertation is using the Céu-Arduino en-

vironment, which supports the development of Arduino and embedded applications in

the programming language Céu, targeting resource-constrained embedded systems. In a

previous work [4], this environment was expanded with energy aware drivers, which add

transparent standby mechanism to the language.

To exemplify the main features of the language, Listing 1 presents an application

that blinks two LEDs at different rates. This example is complicated to be implemented in

the Arduino language, and ends up requiring the use of control variables 3. Using Céu, this

implementation is straightforward. The program uses the structured control mechanism

par to create two lines of execution (known as trails), each one blinking a different LED.

The trails execute synchronously, i.e., there is no preemption or real parallelism.

Communication with the environment is made through await and emit statements.

In this application, the emit is used to turn LEDs on and off, and the await statement

halts the running trail until the specified event occurs, in this case, the passage of a certain

time (250ms or 1s). In Céu, events received from the environment control the execution

of the application, which characterizes a reactive language.

3Using variables to control the application flow usually impairs the sequential reading of the application

19

1 #include "out.ceu"
2 #include "wclock.ceu"
3

4 output high/low OUT_01; // LED connected to pin 1
5 output high/low OUT_02; // LED connected to pin 2
6

7 par do
8 loop do
9 emit OUT_01(high);

10 await 250ms;
11 emit OUT_01(low);
12 await 250ms;
13 end
14 with
15 loop do
16 emit OUT_02(high);
17 await 1s;
18 emit OUT_02(low);
19 await 1s;
20 end
21 end

Listing 1: Céu application that blinks two LEDs in parallel at different rates

2.1 Interrupts and drivers

Interrupts are signals that interrupt what is running on the processor. An embed-

ded application can define interrupt handling routines (also known as Interrupt Service

Routines - ISRs) to be called when an interrupt occurs. After an ISR is executed the

application resumes running where it left off. The ISRs are available in both Arduino and

Céu language and introduce a assyncronous behavior to the application.

Céu deals with the asynchronicity of interrupts and ISRs just as the environment

deals with the outside world (Figure 3). Perceived changes in ISRs are informed to

the main application through events (via await and emit primitives). That way, the

changes will be perceived like any other event, and the main application can still execute

synchronously [13].

As ISRs introduce asynchronous behavior, race conditions can be created due to

shared memory access. The Céu compiler can identify risky situations and generate a

compilation error. Céu also supports the atomic primitive, which allows a code block to

be executed atomically without being interrupted. However, low-level implementations

like ISRs are usually not explicitly used in applications, but encapsulated in drivers which

20

constitute the environment.

Drivers are write-once components developed by embedded systems specialists that

are reused in most applications [13]. They encapsulate the low-level complexity, asyn-

chronous behavior, and hardware details. As an example, we present the int0 driver,

starting with its use in an example application and, then, detailing its implementation.

The example application is presented in Listing 2. It blinks an LED every second

until a button is pressed (ln 8), finalizing with the LED off. As in the example in Listing 1,

the program creates two execution trails, but this time using the par/or statement. While

the par never rejoins, the par/or rejoins when any of the trails terminate, aborting all

other trails. It’s regarded as an orthogonal preemption primitive because the trails need

not to be tweaked to affect each other [13].

1 #include "out.ceu"
2 #include "int0.ceu"
3 #include "wclock.ceu"
4

5 output high/low OUT_13; // an LED is connected to the pin 13
6

7 par/or do
8 await INT0;
9 with

10 do finalize with
11 emit OUT_13(low);
12 end
13 loop do
14 emit OUT_13(high);
15 await 1s;
16 emit OUT_13(low);
17 await 1s;
18 end
19 end

Listing 2: Blinks an LED every second until a interrupt is received

The trail defined between lines 10 and 18 never terminates and blinks an LED every

second inside an endless loop. The trail defined at line 8, on the other hand, terminates

whenever the application receives a INT0 event, which indicates when the button was

pressed. When this happens, the entire par/or block terminates and the other trail is

aborted. The finalize clause (ln 10-12) ensures that its enclosing trail always finalizes

with the LED off, even if it’s aborted.

The button is connected to the MCU via pin 2 (as shown in Figure 4). On the

21

Mini Ultra 8MHz prototyping board, pin 2 can be used as an external interrupt source,

the INT0. The int0 driver encapsulates all interrupt configuration details and emits the

INT0 event to the application whenever the value received by pin 2 changes. Due to the

use of pull-up resistors, the application receives a high value on this pin by default, and

only receives a low value when the button is pressed.

Figure 4: Circuit of the application that blinks an LED every second until a interrupt is
received

The “out” and “wclock” drivers are also used. The wall clock driver (wclock)

controls the passage of time according to the real world. The “out” driver is responsible

for receiving emitted events from the application and output the event payload (which

can be high or low) through digital pins to the real world. In this case, the application

is emitting the output event OUT_13 (ln 5), that is being used to turn on and off an LED

connected to pin 13.

Listing 3 presents the int0 driver implementation. At first line, we declare an

input event INT0, that caries no values (none). An input event is always emitted from

the environment or from an ISR to the application. The ISR is declared between lines 17

and 19 using the spawn async/isr primitive. It’s executed asynchronously whenever the

associated interruption occurs (INT0_vect). In this case, it simply emits the INT0 event.

This way, even if the ISR is called asynchronously, the INT0 event is scheduled into the

event queue and treated synchronously by Céu application.

Céu is designed to interoperate seamlessly with the C programming language [13].

One of these interoperations allows native symbols defined externally in C to be used

inside a Céu program. In order to do so, the external symbols must be declared before

their first use using the native statement and should be prefixed with an underscore [27].

At line 5, the int0 driver declares that it wants to use the INT0_vect, and uses the

22

1 input none INT0;
2

3 #define INT0_PIN 2
4

5 native/const _INT0_vect;
6

7 code/call INT0_Get (none) -> high/low do
8 escape _digitalRead(INT0_PIN) as high/low;
9 end

10

11 {
12 pinMode(INT0_PIN, INPUT_PULLUP);
13 EICRA = (EICRA & ˜((1<<ISC00) | (1<<ISC01))) | (CHANGE << ISC00);
14 EIMSK |= (1 << INT0);
15 }
16

17 spawn async/isr [_INT0_vect] do
18 emit INT0;
19 end

Listing 3: int0 driver

modifier /const so it can’t be reassigned. That variable is included by the Céu-Arduino

environment and it’s based on the Arduino library.

It’s also possible to include C code between curly braces. The code block between

lines 11 and 15 uses the pinMode function from the Arduino library to set the pin associ-

ated with INT0 as input and turn on the pull-up registers4 [28]. Lines 13 and 14 show a

low-level code that manipulates the MCU registers to enable the INT0 interrupt (ln 14)

and configure it to happen on change (ln 13).

The INT0_GET code/call is a code abstraction that returns (using escape state-

ment) the value of the pin associated with the INT0 interrupt. A code/call is similar to

a C function, and can be defined as a subprogram that runs to completion and can’t con-

tain synchronous control statements (e.g. await, spawn) [27]. The INT0_Get uses the C

digitalRead function to retrieve the value from pin 2, and converts its return value from

boolean to high/low. The way this interpolation works is very similar to INT0_vect,

but this time it’s not necessary to declare the symbol using native because Céu-Arduino

environment already does that. As the INT0 event is emitted to the application every

time the pin changes, the INT0_GET code/call is used so the application can identify if

4When an input pin is not connected to any source, Arduino reads high or low randomly. Configuring
the input pin as INPUT PULLUP includes a set of resistors into the input circuit, and makes Arduino
reads high if no source is connected

23

the pin changed from low to high or from high to low.

2.2 Power management mechanism

Céu energy saving mechanisms are based on automatically identifying idle periods

in the application and applying the most economical sleep mode to the MCU automati-

cally. Looking for an application written in Céu, it’s easy to identify the idle periods due

to the await statement. As an example, we can identify three idle moments in Listing 2:

while waiting for INT0 interrupt (ln 8) and waiting for 1 second to pass at lines 15 and

17.

To better illustrate how Céu identifies the idle periods, Listing 4 presents an

overview of the Céu runtime. It maintains a event queue (ln 1), in which new events

are stored. To ensure that an MCU can sleep, all incoming events are generated through

ISRs. At line 3, the application starts, and reaches the await statement in the multiple

trails of the program (known as “boot reaction”). After that, the application verifies the

event queue in an endless loop known as “event loop” (ln 4-11) [13].

Upon receiving an event, the Céu runtime resumes executing the trails that are

waiting for this event (ln 7). Input events emitted asynchronously by ISRs are stored in

the event queue and queried in subsequent iterations of the loop [13]. When there is no

event to react to, i.e., when the application is waiting, the MCU sleeps (ln 9). To choose

each sleep mode to apply, the ceu_pm_sleep instruction verifies which interruptions may

wake up the MCU (Listing 5).

1 evt_t queue[MAX]; // input queue
2 void main () {
3 ceu_start(); // "boot reaction"
4 while (1) {
5 evt_t evt;
6 if (ceu_input(&evt)) { // queries input queue
7 ceu_sync(&evt); // executes synchronous
8 } else {
9 ceu_pm_sleep(); // nothing to execute

10 }
11 }
12 }

Listing 4: Céu runtime architecture

To illustrate this verification, consider an application that waits for a INT0 interrupt

24

to transmit a radio message. In this case, the MCU remains in the deepest sleep mode

waiting for an event arrive and awake it up. According to Table 1, all sleep modes of the

MCU ATMega328/p can be woken up from an external interrupt (indicated as INT in

the table). As all of them can be used, Céu chooses the most power efficient, the “power

down” mode.

If the driver uses some wake-up source that is not available in deepest sleep mode,

it should use the ceu_pm_set instruction. This instruction allows the driver to inform

Céu if a certain interruption should or shouldn’t wake-up the MCU. Céu language power

management mechanism uses this information to choose the sleep mode (as shown in

Listing 5). Drivers are also responsible for indicating when the interrupts are no longer

needed. At this point, it may be interesting to use the finalize statement, to ensure

that they are removed regardless of the way the driver finalizes (because it terminates to

execute or because it was aborted).

1 void ceu_pm_sleep (void) {
2 if (ceu_pm_get(CEU_PM_TIMER1) || ...) {
3 sleep_mode_idle(...);
4 } else if (ceu_pm_get(CEU_PM_ADC)) {
5 sleep_mode_adc(...);
6 } ...
7 } else {
8 sleep_mode_power_down(...);
9 }

10 }

Listing 5: Céu language power management engine: choosing the sleep mode based at
the wake-up sources

An example of a driver that uses the ceu_pm_set instruction is the wclock. It

configures an interrupt to happen after a predefined period of time. This interruption is

generated by a MCU internal timer “timer 1”. This timer is off during most ATmega328/p

sleep modes, which prevents the interrupt from being generated. The only sleep mode

that allows the hardware related to timer 1 to remain on is “idle”. Therefore, timer 1 can

only be used as a wake-up source if the MCU is in “idle” mode.

25

3 METHODOLOGY

As described at the Introduction, this work aims to evaluate the power-saving

mechanism of the Céu programming language, and analyze their possible barriers to

adoption. In summary, we achieve this by analyzing the power consumption of typical

applications in the context of embedded software implemented in Céu and comparing

them to their implementation in Arduino, as suggested in a previous work [4]. To discuss

the adoption barriers, we compared their memory usage and code readability.

The rest of this chapter is organized as follows: Section 3.1 discusses the process

of choosing the applications. Section 3.2 describes the different implementations of each

application, Section 3.3 discusses the embedded devices power consumption analysis and

explains how we measured, estimated and compared it. At last, Section 3.4 explains how

we analyzed the memory consumption and Section 3.5 discusses about the code readability

comparison.

3.1 Choosing the applications

Previous work [4] suggested evaluating the power consumption of realistic applica-

tions by rewriting open-source projects developed by the Arduino community in Céu, and

comparing the time to rewrite, the resulting program structure, and the actual energy

efficiency. However, we found out some difficulties in this approach:

• As Arduino has a great educational appeal, a large part of the applications found

in the community are too simple, and many do not have their intellectual property

clearly explained;

• “Time to rewrite” analysis would be highly influenced by the developer’s prior

knowledge of Arduino and Céu languages. To mitigate this influence, it would

be necessary to conduct the study with a large group of developers. Furthermore,

as Céu is not very well known and used language, it would be necessary to provide

training for these developers. At last, the quality of that training would also be an

aggressive influence on this analysis.

Because of these factors, we adapt the proposal by removing the “time to rewrite”

analysis. Also, instead of rewriting the already existing Arduino code, we implemented

26

both Arduino and Céu applications. The chosen applications represent common pat-

terns in the development of embedded software, such as sensor reading, actuator control,

radio and Bluetooth communication and concurrent behavior 5, and illustrate common

code patterns that hamper readability (explained at Section 3.5). These applications

also illustrates common hardware and software power-saving techniques used in SO-less

resource-constrained devices that are related to standby mode. These techniques are

described at the Chapter 1, and include:

• Choosing hardware that control their own power consumption, such as the HC-05

Bluetooth module and the DHT11 sensor;

• Turning hardware off when not in use. This technique was applied to the soil

humidity sensor and for the ky-036 sensor;

• Controlling hardware power saving modes. In our case we controlled the MCU

sleep modes, but other hardware (sensor, actuators, radios etc.) need to have their

power-saving modes controlled via software

The chosen applications are:

• An smart lighting system consisting of two devices, a transmitter and a receiver,

that communicate via Bluetooth.

• A device that collects air humidity and soil moisture, and transmits this information

via radio.

3.2 Applications implementations

We wrote three implementations for each application. The first one, in Arduino,

illustrates the applications normally found in the community. They generally follow the

structured and sequential style proposed by the Arduino platform, which allows simple

and readable code, and avoids the complexity of dealing with asynchronous code and

Interrupt Service Routines (ISRs). However, it’s common to use blocking operations,

which impair reactivity and prevent operations from executing concurrently [4] [29]. In

this implementation there are no energy savings at software level.

5For example, waiting for a radio message to arrive while waiting a presence detection

27

In the second implementation, also in Arduino, we performed all energy saving

manually. These types of implementations are typically used in more professional projects,

especially when creating battery-powered devices. They are characterized by being com-

plex and difficult to read, and containing ISRs, control variables and low-level code, such

as register manipulation. It’s also common for them to violate the structured and sequen-

tial style proposed by Arduino to accommodate concurrency.

The last implementation, in Céu, demonstrates the transparent power saving mech-

anism provided by the language, and its structured reactive style that allows an easy-to-

read code. At this point, it was necessary to assess the need to create additional drivers.

As already mentioned, we created three new drivers.

3.3 Power consumption analysis

After developing the applications, we estimated the power consumption of each of

their implementations. Estimating the energy consumption of an embedded device usually

starts even before a prototype is created. Developers analyze each hardware element

separately, and verify their power consumption by consulting datasheets or manually

measuring it. Although simple, this analysis already helps in choosing the hardware and

contributes to a better project [30].

When a prototype is already available it can be measured as a black box the same

way the hardware elements are. In this moment, the measurement is useful not only for

estimating consumption, but also for detecting energy leakage before creating the final

version of the device [30]. Before or after a prototype exists, the power measurements can

be used to estimate the power consumption and battery life.

Our analysis mixes these two approaches and was performed in five steps:

1. Analyzing each hardware individually to identify the order of magnitude of its

consumption (mA, µA , nA etc.), and how quickly it changes. This step is crucial

to define which measuring instruments can be used.

2. Identifying the application states, and estimate their duration. Some com-

mon states of embedded applications are: waiting for some time to pass, collecting

data from a sensor, transmitting messages via radio and waiting for a user interac-

tion. We modified the applications to time and display the duration of most states

28

(this modification was removed later). For states where the application waits for

a predefined period, it was not necessary to time it. At last, for applications that

depend on user interaction, a typical usage routine was considered.

3. Measuring the consumption of each state. The most common measuring in-

struments allow readings between several orders of magnitude (ranging between

some microamps and some few amps). However, it’s necessary to adjust the mea-

suring range manually, which can prevent continuous measurement of an application

that has large variations in power consumption. Thus, in this dissertation, we prefer

to measure each application state individually. This allows each state to be mea-

sured with the most suitable instrument and avoids the need of instruments that

allow uninterrupted reading, which are generally more expensive and less accessible.

Sections 3.3.2 and 3.3.3 better discuss the challenges of measuring power consump-

tion of embedded devices, and which instruments were chosen for this dissertation.

4. Estimating the average power consumption by calculating:

(state1power · state1duration) + ...+ (stateXpower · stateXduration)

state1duration+ ...+ stateXduration

As an example, consider an application that transmits a message via radio every

second. Also consider that the device consumes 5 µA while waiting one second, and

20 mA during transmission, which lasts 55ms.

(5µA · 1s) + (20mA · 55ms)

1s+ 55ms
=

(5µA · 1000ms) + (20000µA · 55ms)

1000ms+ 55ms

= 1047.39µA ≈ 1mA

Therefore, the average consumption of this application is approximately 1 mA.

5. Estimate battery life: The average consumption obtained from the previous step

would be enough to compare the applications. However, we also estimated the

battery life, as we understand this to be a more meaningful information for the

reader. Accurately estimating how long a battery will last can take into account

several factors, such as temperature and its composition, discharge rate and cutoff

29

voltage. For this work, we will consider ideal conditions for simplicity, following the

formula:

BatteryLife =
BatteryCapacity(mAh)

AverageDeviceConsumption(mA)

As an example, the device from the previous step would remain on for eight days

and eight hours if powered by a 200 mAh battery.

BatteryLife =
200mAh

1mA
= 200h = 8 days and 8 hours

3.3.1 Power comparison

Arduino and Céu implementations were compared to illustrate the transpar-

ent power saving mechanism of the Céu programming language. To obtain the power

savings percentage, we used the average consumption of each implementation as follows:

PercentageOfPowerSavings = (1− (Ceu/Arduino)) · 100

As an example, consider an application whose Arduino and Céu implementations

consume, respectively, 30 and 15 mA. This means that the implementation in Céu con-

sumes 50% less energy than the implementation in Arduino.

The Arduino with manual power management and Céu implementations

were also compared based on their energy consumption. Ideally, they should have the same

power consumption, otherwise it means that either the Arduino application can still be

optimized, or that the Céu language is not applying the most efficient power-saving mode.

3.3.2 Measuring instruments

Measuring the consumption of embedded devices can be a challenge, as the con-

sumption is generally small (usually no more than some milliamps) and varies quickly

between several orders of magnitude: an embedded software application can easily con-

sume tens of milliamps at its peak and a few microamps during its most economical

mode [30].

30

Several instruments can be used for this, from the most generic ones, such as digital

multimeters and oscilloscopes, to more specific instruments, such as current waveform

analyzers. During this work, some instruments were analyzed:

• Digital multimeters are relatively inexpensive and easy to find instruments. Basi-

cally, there are two ways of measuring embedded devices current using a multimeter.

The first one is using the multimeter as an ammeter to directly measure the current.

In this case, the multimeter is introduced in the circuit in series (Figure 5(a)). An-

other possibility is to use a shunt resistor (Figure 5(b)). This technique consists of

inserting a low-resistance resistor into the circuit and measuring the voltage across

it. Thus, it’s possible to obtain the current using ohm’s law.

(a) Using ammeter functionality (b) Using a shunt resistor

Figure 5: Measuring current using a multimeter

Using a multimeter to measure an application that varies greatly in power con-

sumption requires some precautions. Although it allows measuring currents from a

few milliamperes to amperes, it’s necessary to manually choose a range to measure.

Ranges vary between different multimeter models as shown in (Figure 6).

As an example, the DT830B multimeter has 5 range settings for measuring current

(200µA, 2000µA, 20mA, 200mA, 10A). This means that, for reading a 100µA, we

need to choose the first setting, but for reading a 10mA, we should chose the third

one. The Fluke 17B+, by the other hand, has only three ranges for measuring

31

(a) DT830B (b) Fluke 17B+

Figure 6: Multimeter range settings

current (µA, mA and A). To measure different power modes (varying between mil-

liamperes and microamperes, for example), it’s necessary to manually change the

settings and taking separate recordings to patch together a full picture of the power

consumption.

Multimeters are not suitable instruments for analyzing rapid changes in consump-

tion, such as consumption peaks of a few microseconds. As the goal of multimeters

is to measure and display a practically constant value (either current or voltage),

these variations are difficult to notice and can lead to measurement errors.

• Pliers ammeters use the Hall effect to measure current non-invasively (Figure

7). However, this instrument can’t measure small currents like those consumed in

embedded devices (usually µA to few mA).

Figure 7: Pliers ammeter

• Oscilloscopes can be used to measure current through common probes by look-

32

ing at the differential voltage around a shunt resistor (in the same way as used

in multimeters). A more accurate solution (but which requires a greater financial

investment) is to use a specific probe for current measurement. Oscilloscopes pro-

duce a graph with the measured value, which allows a better visualization of the

application’s consumption pattern.

Figure 8: Oscilloscope

As with the multimeter, manually changing settings (such as changing shunt resis-

tors and probes) and taking separate recordings may be required to prevent small

differences in the measured values from being omitted because of the scope’s reso-

lution.

• Embedded devices current waveform analyzers are specific instruments for

measuring embedded devices power consumption. It’s possible to measure a wide

range of current (from picoamps to a few amps) and generate more accurate graphics

than oscilloscopes. In addition, there is no need to manually change the measuring

range, which allows the measurement to be done without interruptions. However,

the major limitation for using theses instruments is its high price [31].

Figure 9: Current waveform analyzer

33

• DC bench power supply usually have a display that indicates the amount of

current supplied (Figure 10(a)). However, this measurement is generally not accu-

rate. More professional models have a more accurate measurement. The Keithley

2280S (Figure 10(b)), for example, even allows the creation of accurate consumption

graphs [32], just like current waveform analyzers does.

(a) YaXun PS-1502DD (b) Keithley 2280S

Figure 10: DC power supplies

• Arduino based current meters are cheap and accessible instruments, which allow

the measured value to be logged via serial. They can be analyzed in a PC to create

graphs. It’s also possible to visualize the measured values in real time using serial

plotters software.

Although there are several Arduino-compatible current sensors available on the mar-

ket, most are not capable of measuring currents as small as those consumed by

embedded devices. The alternative is to measure current indirectly, using a shunt

resistor (Figure 11).

Figure 11: Arduino based current meter

Using an Arduino for current measurement requires attention when choosing the

34

shunt resistor and the analog reference value of the analog to digital converter.

These two settings influence the resolution.

3.3.3 Instruments used in this work

In this dissertation we use the Fluke 17B+ digital multimeter (Figure 6(b)), and

a current meter based on Arduino. These instruments are accessible and cheap when

compared to other ones.

The multimeter was used to measure application states where there is little varia-

tion in power consumption and that last long enough to be perceived by the instrument.

In contrast, the current meter in Arduino was used to analyze consumption peaks and

measure shorter states. As an example, we can mention the active state of the DHT11

temperature sensor, which only lasts about 25ms. Such a short duration wasn’t abble to

be measured by the multimeter.

With the current meter based on Arduino it was also possible to observe the power

consumption peak during the transmission of the radio nRF24l01+. This peak lasts about

1 millisecond and consumes 11mA. In this case, the Arduino didn’t behave so well and

ignored some transmission peaks. However, the observed peaks indicate a consumption

similar to that presented in the transceiver datasheet and to the consumption measured

by members of the Arduino community [33] [34].

It’s also worth mentioning that we prefer to use a power supply instead of batteries

to perform the measurements. In our case, we use YaXun 1502DD, but any other could

be used. When discharging, batteries decrease the voltage supplied to the circuit, which

ends up influencing the measured current.

3.4 Memory consumption analysis

Our memory analysis used the information provided by the Arduino compiler,

which indicates the storage and memory usage against the specifications of the selected

board. As Céu-Arduino compiles a Céu program to C and uses the Arduino compiler to

upload it to the MCU, we could obtain the memory usage information in the same way

for all implementations.

Figure 12 shows an example of the memory usage information provided by the

35

Arduino compiler. At the first line it indicates the used “program store space”, a ROM

Flash memory where the Arduino program and the bootloader are stored6. The second line

indicates the used SRAM, which is where the program creates and manipulates variables

when it runs [35].

Figure 12: Memory usage information provided by the Arduino compiler

We expect Céu applications to consume more memory, since Céu-Arduino stores

information that are used by the language to provide the synchronous behavior and the

automatic power-saving mechanism. Examples of this information are: current MCU

sleep mode and the input events queue. However, we advocate that Céu compiler can

still be optimized to use less memory. To validate it, we performed an initial manual

optimization in which unused code was manually removed.

3.5 Readability comparison

In software development, “readability” is a software quality metric that illustrates

how easy a software is to read and understand. This term can overlap with other terms

such as “legibility”, “understandability” and “comprehension” and its definition varies

by author [36]. It’s worth mentioning that readability is closely related to writeability

and maintainability, mostly because the majority of the development time is spent on

debugging and understanding an already existing code.

Several works try to analyze and measure code readability, and are mostly based

on three approaches. Human-centered studies analyze code readability by performing

experiments with a group of developers. This type of study is good to illustrate the

readability perception of a certain group. As a downside, it usually involves a large number

of developers, and their background, previous programming experience and familiarity

with the evaluated programming language have a great impact on the result. When

comparing two or more programming languages, the developer experience have even a

greater impact since they’re likely to know more about one language than the other,

which could influence his readability analysis.

6Although important, bootloaders usually don’t consume a lot of memory. The ATMega328p, for
example, it consumes only about .5k bytes

36

Model-based studies create, execute and/or analyze readability models. These

models analyze characteristics of the code, such as number of operators, program size and

number of indentations to generate a score that represents the readability. These models

have great appeal in the industry, as they allow a quick verification of code quality and are

easily integrated with continuous integration tools. Common uses are to automatically

check whether a code modification improves or decreases the code quality of a project,

and identify the hardest-to-read files so developers can analyze and propose refactorings.

The last approach is to analyze code patterns that hamper readability. An

example of one of these patterns is the problem known as “prop drilling”, easily found

in projects that use the React framework. In this case, a property is passed through

a component hierarchy just to be used by the final one. It’s argued that this problem

impairs the readability since the definition and usage of a variable can be very far away, but

mainly because several components in the hierarchy needs to know a property that they

shouldn’t know only due to implementation details. Therefore, it’s useful to identify this

pattern in a code project and try to use some alternative. When comparing two different

programming languages, this analysis can also be very helpful to illustrate problems that

are likely to happen at language A and discuss why they are not likely to happen when

using language B.

The next sections present some related works that analyze readability (Section 3.5.1),

and discuss the chosen approach for this dissertation (Section 3.5.2).

3.5.1 Related works

This section presents several related works that were used as reference for defining

the readability analysis methodology for this dissertation.

Work [37] analyzes several commits related to code readability improvements and

tries to answer some questions, including: “Are state-of-the-art readability models able to

capture readability improvements in practice?”. To answer this question, three existing

state of the art readability models were investigated: Scalabrino, Dorn and a Combined

model, which combines the first two models as well as Buse Weimer’s model and Posnett’s

model. The results confirm that those models fail to capture readability improvements

and thus do not appear to be suitable for day to day maintenance tasks.

The article [38] promoted a study where several programmers were challenged

37

to implement a solution to one single problem using one of the following programming

languages: C, C++, Java, Perl, Python, Rexx, and Tcl. After that, their implementa-

tion were compared based on the following metrics with the objective of comparing the

programming languages features: programming length, amount of comments, program

reliability (i.e. if the implementation produces the expected result), robustness (if the

implementation doesn’t fail when received unexpected inputs) and work time and pro-

ductivity. This article raises concerns about comparing different programming languages

and the reliability of their experiments. One of these concerns is that “Any programming

language comparison based on actual sample programs is valid only to the degree to which

the capabilities of the respective programmers using these languages are similar”.

The paper [39] conducted a survey where 120 students evaluated 100 snippets of

Java code according to their readability. The survey results were compared to a set of

local code features (such as number of blank lines and number of comments) in order to

understand which of these metrics are important, how important they are, and whether

they influence positively or negatively the quality of the code. Using those features, they

construct a readability measure.

At last, [10] rewrote the video game Pingus from C++ to the language Céu, and

discussed how the Céu characteristics helped eliminating patterns that hamper readability

usually found at C++ video games implementations. One of the mentioned patterns is

the “lifespan hierarchies”, which illustrates that memory and visibility of game entities

are managed through class fields and containers. In Céu, all entities have an associated

lexical scope, similarly to local variables with automatic memory management, so there

is no need to use variables and to manage memory explicitly. Together with the analysis

of other patterns, the article concluded that most difficulties in implementing control-

flow behavior in game logic is not inherent to this domain, but a result of accidental

complexity due to the lack of structured abstractions and an appropriate concurrency

model to develop event-based applications.

3.5.2 The chosen approach

Among the approaches, we discard the use of models as some works (such as [37])

already consider them unrepresentative. Furthermore, more commercial models such as

38

those provided by the SourceMeter7 and SonarQube8 tools are not available for Arduino

and Céu.

We also chose to not execute human-centered studies due to the various threats

to their validity, as pointed at [38]. Among of the threads, the fact that the language

Céu is not yet well known and that its synchronous and event-based paradigm is not so

commonly used could negatively influence the readability analysis of Céu programs. We

also believe that the participants would have to receive a training about the Céu language,

and the quality of the training could be a big influence in the experiment results.

To analyze the readability, we chose the “code pattern” approach. The first step

was to identify some code patterns that hamper readability while developing Arduino

applications. The patterns found were:

• ISRs: Although ISRs are easily found in embedded applications, using them rep-

resents a break in the sequential reading of the code. They also introduce asyn-

chronous behavior, which makes the code more error prone and harder to debug.

Finally, ISRs usually require the usage of global variables to allow the communica-

tion between ISRs and the main application.

• Register manipulation: Registers often do not have an easy-to-read name and

require the developer to know details about the hardware used. We can also con-

sider that the operators used for register manipulation are less known/used by the

Arduino community and can also hamper a fast code reading;

• Global variables: Using global variables usually represents a tight coupling of

code and harms code encapsulation;

• Control variables: They are normal variables that are used together with control

statements to store the application states and control the application flow. This

pattern impairs sequential reading, and is usually found when the application has

some concurrent behavior. It can also be found when the application needs to store

states between the executions loop function and when an ISR needs to communicate

with the main application.

7https://sourcemeter.com/
8https://www.sonarqube.org/

39

After that, we identified these patterns in the implementations of the applications

developed in this dissertation in order to understand if using the Céu language helped to

reduce the occurrence of those patterns.

40

4 DEVELOPED DRIVERS

Three drivers were developed throughout the dissertation in order to enable the

development of the applications presented in Chapter 5.

4.1 Driver d-sensor

Several embedded applications receive values from digital sensors, but often this

reading does not occur throughout all the application life cycle. Therefore, the circuit

responsible for reading the digital sensor can be switched off at times to save energy. The

d-sensor driver uses the lexical scope of the Céu language to infer when a sensor circuit

is no longer used and turn it off.

The circuit responsible for reading digital sensors can be customized for a partic-

ular project or be a shelf module like the ky-036 or ky-038. These modules (touch and

microphone sensor, respectively) have, in addition to the sensor, other elements that facil-

itate the acquisition of the sensor data. In the case of ky-036, for example, the module has

two indicative LEDs, a potentiometer to control the sensitivity of the sensor, an amplifier

and a comparator. Some of these elements consume energy, and can be turned off when

not in use.

1 #include "dsensor-int0.ceu"
2 #include "wclock.ceu"
3 #include "out.ceu"
4

5 output high/low OUT_13;
6

7 par/or do
8 var& DSensor_INT0 mysensor = spawn DSensor_INT0(7, _, _);
9 var high/low v = await mysensor.change until v==high;

10 with
11 loop do
12 emit OUT_13(high);
13 await 1s;
14 emit OUT_13(low);
15 await 1s;
16 end
17 end

Listing 6: d-sensor application example

41

Listing 6 shows, as an example, an application that blinks an LED every second

(ln 11-16) while waiting for a digital sensor to detect a high value (ln 8-9). This sensor

is being powered by pin 7 (Figure 13), and it’s the d-sensor driver that manages when it

should be on. When the high value is detected, the await at line 9 can proceed, and, since

there are no more instructions, its enclosing trail terminates and the scope of mysensor is

lost. In this moment, the sensor is automatically turned off, i.e. the output pin 7 becomes

low.

Figure 13: d-sensor application circuit

Listing 7 presents a second application, which waits for a high value from the touch

sensor to transmit a radio message (the radio transmission was omitted for simplicity).

The do-end (ln 4-7) statement creates an explicit block.

1 #include "dsensor-int0.ceu"
2

3 loop do
4 do
5 var& DSensor_INT0 mysensor = spawn DSensor_INT0(7, 1, 500);
6 var high/low v = await mysensor.change until v==high;
7 end
8 // sends a radio message
9 end

Listing 7: d-sensor application example - manually scoped

Block declarations are present in several programming languages (C, JavaScript,

etc.) and using them is considered a good practice to delimit scope. In the example

in Listing 7, the variables mysensor and v are limited to the do-end block and, then,

can’t be used outside it. As the Céu language and the d-sensor driver use the scope of

42

DSensor_INT0 to turn the sensor on and off on, not using blocks can negatively influence

the application’s energy consumption. In Listing 7, if there were no blocks, the sensor

would remain on during the radio transmission.

Listing 8 presents a simplified version of the driver implementation. As soon as

DSensor_INT0 is spawned, the driver sets the power pin as output (ln 9) and turns the

sensor on (ln 10). Before going to the next step, the d-sensor waits some milliseconds for

the circuit to stabilize. This time varies from circuit to circuit, and should be evaluated

based on the hardware used. For off-the-shelf modules, this value is usually present in

datasheets.

1 #include "int0.ceu"
2 #include "wclock.ceu"
3

4 code/await DSensor_INT0(var int energyPort, var int time, var int
debounce) -> (event high/low change) -> NEVER do

5 do finalize with
6 _digitalWrite(energyPort, low);
7 end
8

9 _pinMode(energyPort, OUTPUT);
10 _digitalWrite(energyPort, HIGH); //turn on
11 await (time!)ms; // waits for the circuit to stabilize
12

13 loop do
14 await INT0;
15 await (debounce!)ms;
16

17 var high/low v = call INT0_Get();
18 emit change(v);
19 end
20 end

Listing 8: d-sensor driver

Between lines 13 and 19, the driver waits to receive the INT0 event, which indicates

when pin 2 state changes. After receiving the event, the driver waits some milliseconds for

debounce before emitting the internal event change (ln 17). This event caries the value

of the pin 2, i.e., if the pin is receiving a high or low value. Unlike input events, internal

events don’t need to be emitted from ISRs and serves as signaling and communication

mechanisms among trails [27].

43

4.2 Driver a-sensor

The a-sensor driver works similarly to the d-sensor, but for analog sensors. List-

ing 9 presents its implementation. As with the d-sensor, the a-sensor driver manages the

informed power pin, turning it on when it starts (ln 10) and turning it off when it finalizes

(ln 5-7). Its main difference is in obtaining sensor data. While the d-sensor waits for pin

2 value changes in a loop, the a-sensor performs a single analog reading (ln 13-14). After

that, the ASensor_Get returns the read value using the escape statement9.

1 #include "wclock.ceu"
2 #include "adc.ceu"
3

4 code/await ASensor_Get(var int dataPort, var int energyPort, var int
time) -> int do

5 do finalize with
6 _digitalWrite(energyPort, low);
7 end
8

9 pinMode(@energyPort!, OUTPUT);
10 digitalWrite(@energyPort!, HIGH);
11 await (time!)ms;
12

13 spawn Adc();
14 var int value = await Adc_Conversion(dataPort);
15

16 escape value;
17 end

Listing 9: a-sensor driver

Listing 10 exemplifies its use with an application that transmits readings from an

analog sensor every 2 seconds. The ASensor_Get (ln 5) turns on the sensor, waits for

the circuit to stabilize, reads the sensor value and turns it off right after. While the

application transmits the value via radio and waits for two seconds, the sensor remains

off.

9In this case, escape statement works as the C and Java return statement, i.e., terminating the deepest
matching enclosing block and possibly carrying a value - in this case the variable “value”

44

1 #include "asensor.ceu"
2 #include "wclock.ceu"
3

4 loop do
5 var int v = await ASensor_Get(_A0, 7, 1);
6 // transmit via radio
7 await 2s;
8 end

Listing 10: a-sensor application

4.3 Driver dht 11

The dht11 driver was created to enable the use of the DHT11 temperature and

humidity sensor in applications written in Céu. This sensor can be easily connected to

the Arduino, and it only requires a resistor. However, in this dissertation we used the

breakout board shown in Figure 14 to facilitate the connection.

Figure 14: DHT11 humidity and temperature sensor in a breakout board connected to
the Mini Ultra prototyping board

DHT11 uses a single digital pin to send the measured data to the MCU. In a

simplified way, the sensor remains in standby mode until it receives a request from the

MCU. Then, it transmits 40 bits of data: 16 bits for humidity, 16 bits for temperature

and 8 bits for a checksum. After the transmission, the sensor returns to the standby mode

and goes back to waiting for a new request.

The data request step is shown in Figure 15. The MCU starts the communication

by pulling the data-bus low10 and waiting at least 18 milliseconds before pulling it high

10The data bus between the MCU and DHT11 should be kept high by default. That’s why we use a
pull-up resistor. In our case, it is encapsulated inside the DHT11 breakout board.

45

again to request for a sensor response. Then, the sensor pulls down the wire for 80

microseconds as a response signal and indicates that data transmission will begin by

pulling it up again for another 80 microseconds.

Figure 15: Start of the communication between a microcontroller and a DHT11 sensor

All bit transmission starts with a low signal of 50 microseconds, followed by a high

signal. The duration of each high signal indicates whether it represents bit “0” (between

26 and 28 microseconds) or “1” (70 microseconds) - Figure 16.

Figure 16: DHT sends data to microcontroller

The dht11 driver implements this protocol in a single code/call, the DHT_Read.

Listing 11 shows an example of how this code/call is used. The example application

performs the reading on line 8, passing as a parameter to DHT_Read the pin that connects

the sensor to the Mini Ultra (pin 2), and the temp and hum variables. The & operator

allows these variables to be changed inside the code/call.

46

1 #include "wclock.ceu"
2 #include "dht11.ceu"
3 loop do
4 await 2s;
5

6 var real temp=0;
7 var real hum=0;
8 call DHT_Read(2, &temp, &hum);
9

10 // Format and transmit temperature and humidity data
11 end

Listing 11: Application that reads temperature and humidity data and transmits them
via radio

47

5 COMPARISON OF APPLICATIONS IN CÉU AND ARDUINO

5.1 Smart lighting

The smart lighting application was inspired by previous work [29], and aims to

reduce unnecessary lighting in a environment. The application monitors the presence in

the environment, and turns on the lighting when a presence is detected. After some time,

the lighting is turned off. There is also the possibility to turn off presence detection and

keep the lights off. Preventing the lights from being turned on due to presence detection

can be interesting during periods of intense daylight or at times when the user wants to

keep the environment dark, such as while sleeping or watching a movie.

As the lighting and presence sensor may be located at an hard to reach place

(such as at the ceiling of a room), the application was divided into two devices, which

communicate via Bluetooth. The transmitter (TX) is composed by a switch, and the

receiver device (RX) is composed by the presence sensor and the lighting module, which

is responsible for lighting the environment and can be composed of any type of lighting,

such as LEDs or lamps.

We chose to use Bluetooth to facilitate a possible replacement of the switch module

with a mobile application that runs on a cell phone or tablet. Both devices use the HC-

05 Bluetooth module with a breakout board for communication. It has 3 energy saving

modes, as shown in Table 2. These modes are controlled automatically by the HC-05.

The breakout board LED remains flashing throughout the application, which justifies the

variation in the module’s energy consumption.

Power consumption (mA) Duration
Waiting paring 41-43 Until the module is paired
Active mode - TX, RX
and right after paring

18-23 5s

Sleeping 2.8-8
Until it loses paring, or finish
transmitting or receiving

Table 2: HC-05 power consumption

48

5.1.1 TX application

The TX device uses a switch, and remains idle most of the time waiting for a user

interaction to send a message to the RX. When the switch is turned off, the TX sends the

message “0” to disable the presence detection and turn off the lighting. When it’s turned

on, it sends the message “1” so the RX starts detecting presence again.

Figure 17: Simplified schematic of TX device

1 const int lightSwitchPin = 2;
2 boolean lightSwitchState;
3 boolean lastLightSwitchState;
4

5 void setup() {
6 Serial.begin(9600);
7 pinMode(lightSwitchPin, INPUT_PULLUP);
8 }
9

10 void loop() {
11 lightSwitchState = digitalRead(lightSwitchPin);
12

13 if (lightSwitchState != lastLightSwitchState) {
14 if (lightSwitchState == HIGH){
15 Serial.print("1");
16 } else if (lightSwitchState == LOW){
17 Serial.print("0");
18 }
19 }
20

21 lastLightSwitchState = lightSwitchState;
22 }

Listing 12: Smart lighting application - Arduino implementation

Figure 17 presents a simplified schematic of the device circuit. The switch is

connected to the MCU via pin 2, which allows the use of the external interrupt INT0. We

used the MCU’s internal pull-up resistors to ensure that pin 2 receives a high value if the

switch is open.

49

The Arduino implementation is shown in Listing 12. In this implementation, the

application is always polling and checking whether the switch is on or off (ln 11 and 13)

to send a message via Bluetooth (ln 14-18). The communication between the Arduino

and the HC-05 module is done via UART serial communication (ln 6, 15 and 17).

Listing 13 shows another way to implement the same application in Arduino. In-

stead of always keeping the device active, we put its MCU in the deepest sleep mode (ln

15). It only exits this mode if it receives an external interrupt that indicates a change in

the switch pin value. When coming out of the sleep mode, the application can then check

if the switch has been turned on or off (ln 17) and send the corresponding message to the

Bluetooth module (ln 19 and 21). It was also necessary to add a delay (ln 24) to wait for

the message to be sent via serial before the MCU goes back into sleep mode.

1 #include "LowPower.h"
2

3 const int lightSwitchPin = 2;
4 boolean lightSwitchOn;
5

6 void lightSwitchChangedISR() {}
7

8 void setup() {
9 Serial.begin(9600);

10 pinMode(lightSwitchPin, INPUT_PULLUP);
11 }
12

13 void loop() {
14 attachInterrupt(digitalPinToInterrupt(lightSwitchPin),

lightSwitchChangedISR, CHANGE);
15 LowPower.powerDown(SLEEP_FOREVER, ADC_OFF, BOD_OFF);
16

17 lightSwitchOn = digitalRead(lightSwitchPin);
18 if (lightSwitchOn) {
19 Serial.print("1");
20 } else {
21 Serial.print("0");
22 }
23

24 delay(50); // serial await
25 }

Listing 13: Smart lighting application - Arduino implementation with manual power
saving

The implementation in Céu (Listing 14) waits, at line 6, for a INT0 input event,

50

which indicates that the switch has changed state. At this point, the application reaches

an idle state and is automatically put into the deepest sleep mode. After a change happens,

the application can go to the next line, where the pin value is read (ln 8) and the message

is sent to the Bluetooth module via UART (ln 18).

1 #include "usart.ceu"
2 #include "int0.ceu"
3 #include "string.ceu"
4

5 loop do
6 await INT0;
7 do
8 var high/low v = call INT0_Get();
9

10 spawn USART_Init(9600);
11

12 var[2] byte str = [];
13 if (v == high) then
14 call String_Append_STR(&str, "1");
15 else
16 call String_Append_STR(&str, "0");
17 end
18 await USART_Tx(&str);
19 end
20 end

Listing 14: Smart lighting application - Céu implementation

Table 3 presents the power consumption of each implementation. We observed

that the implementation in Céu had the same consumption of the implementation in

Arduino that saves energy manually. This represents that the language Céu was able to

apply the deepest sleep mode possible during the idle period.

Power consumption (mA)
Arduino Power-saving Arduino Céu Duration

Waiting pairing 44-46 41-43 41-43 Until the Bluetooth is paired
After paired 22-26 18-23 18-23 5s
Waiting for
switch change

6.6-12 2.9-6 2.9-6
Until the user interacts
with the switch (2 hours)

TX 22-26 22-26 22-26 5s

Table 3: Power consumption of the smart lighting TX application

To calculate the average consumption of each implementation, we disregarded the

“Waiting pairing” and “After paired” states because we understand that these states

51

would only happen in an initial moment of the application. We also assume that the

user interacts with the application every two hours. With that, we obtained an average

consumption of 9.3 mA for the Arduino implementation and 4.46 mA for the Céu imple-

mentation. Considering a 2600 mAh battery, the application in Céu could execute for 24

days, while the one in Arduino (Listing 12) would last 11 days.

During the analysis of memory usage, we observed that the implementation in

Céu consumes about 29% of the device’s total memory while Arduino implementations

consumed less than 8% (Table 4). As discussed at Chapter 3, we believe that Céu com-

piler can be optimize for memory usage. To illustrate it, we perform a manual memory

optimization by removing unused code, which reduced the Céu code size from 9140 bytes

to 6114 bytes, resulting of 19.6% of the device’s total memory instead of 29%.

ROM RAM Total
Arduino 6.4 % 9.3 % 6.5 %
Power-saving Arduino 7.2 % 9.3 % 7.3 %
Céu 29.7 % 18.4 % 29 %
Céu with manual memory optimization 19.9 % 15.3 % 19.6 %

Table 4: Memory usage of the smart lighting TX application

Regarding code readability, we can mention that the Arduino implementations

used global variables to store the current and previous state of the switch. Managing

states introduces more complexity to the code, making it more difficult to read and

maintain. Furthermore, the very use of global variables may impair code readability, as

discussed in Chapter 3. In the Céu implementation, however, the use of global variables

was not necessary. It was also not necessary to store the last state of the switch, since

the synchronous reactive model of the Céu language already allows the identification of

changes in the switch without the need for state variables.

5.1.2 RX application

As discussed, the RX application turns on the lighting if a presence is detected,

and turns it off after a timeout (Figure 18). The application also waits, in parallel, to

receive a message via Bluetooth. If the message is “0”, the lights will remain off until

a “1” message is received and the application goes back to monitoring presence in the

environment.

52

Figure 18: RX application states

We used the ky-036 sensor to simulate presence detection behavior and a LED to

represent the lighting module11. Figure 19 presents a simplified schematic of the device.

The ky-036 sensor is powered by the MCU digital output pin 7, and informs the application

if a presence is detected or not using pin 2.

Figure 19: Simplified schematic of RX device

A simplified version of the Arduino implementation is presented in Listing 15. It

uses polling to check if there is a message to be read (ln 4-12), if the LED has to be kept

off regardless of presence detection (ln 12-15) and if any presence was detected (ln 15-23).

The sequential and synchronous structure encouraged by the Arduino language does not

prove to be a good choice for this application due to its asynchronous nature (checking

a sensor while waiting for a message). To implement the asynchronous behavior it was

11Alternatively we could use a digital presence detection sensor like Seeed’s PIR motion sensor instead
of the ky-036 touch sensor and a relay module instead of the LED.

53

necessary to use a global control variable (presenceDetectionEnabled) and decision

structures, improving code complexity and decreasing its writability and readability.

1 boolean presenceDetectionEnabled = true;
2

3 void loop() {
4 if (Serial.available() > 0) {
5 String incomingByte = Serial.readString();
6 if (incomingByte.equals("1")) {
7 presenceDetectionEnabled = true;
8 } else if (incomingByte.equals("0")) {
9 presenceDetectionEnabled = false;

10 digitalWrite(ledPin, LOW);
11 }
12 } else if (!presenceDetectionEnabled){
13 // always keeps the LED off if the last message received was 0
14 digitalWrite(ledPin, LOW);
15 } else {
16 // turn the LED on if a presence is detected
17 boolean presenceDetected = digitalRead(sensorDataPin);
18 if (presenceDetected) {
19 digitalWrite(ledPin, HIGH);
20 delay(3000);
21 digitalWrite(ledPin, LOW);
22 }
23 }
24 }

Listing 15: Smart lighting application RX - Arduino implementation

54

In the Céu implementation (Listing 16) it was not necessary to use control variables

or conditional structures. The par/or allowed the application’s parallel behavior to be

implemented directly.

1 output high/low OUT_13;
2

3 spawn USART_Init(9600);
4

5 loop do
6 par/or do
7 await USART_Rx_Str("0"); // waits until receiving the value 0
8 emit OUT_13(low);
9 with

10 loop do
11 do
12 var& DSensor_INT0 mysensor = spawn DSensor_INT0(7, _, 0);
13 var high/low v = await mysensor.change until v==high;
14 end
15

16 emit OUT_13(high);
17 await 3s;
18 emit OUT_13(low);
19 end
20 end
21

22 await USART_Rx_Str("1"); // waits until receiving the value 1
23 end

Listing 16: Smart lighting application RX - Céu implementation

The Arduino implementation with energy saving is divided in three Listings (17, 18,

and 19) that are responsible for the application startup routine, the ISR that is executed

when a message is received and the application loop, respectively. Lines 2 to 7 of List-

ings 17 configure the serial communication between the MCU and HC-05 Bluetooth mod-

ule and enable interrupts. This is a hard to read code that requires hardware knowledge

and register manipulations.

The main change to enable power saving was to put the MCU in sleep mode in line

3 of Listing 19. The MCU can be woken from this sleep mode when an INT0 interrupt

occurs (enabled on line 2) or when a message is received via serial. To make this last

case possible, we inform the parameter USART0_ON for the function that puts the MCU

in sleep mode, which indicates that the hardware related to the USART communication

must be kept on during sleep.

55

1 void setup() {
2 UCSR0A = 1 << U2X0;
3 UBRR0H = (BAUD_USART(9600)>>8); // set baud rate
4 UBRR0L = (BAUD_USART(9600));
5 UCSR0C = (1<<USBS0)|(3<<UCSZ00); // 8data, 2stop-bit
6 UCSR0B = (1<<RXEN0) | (1<<TXEN0) // enable RX/TX
7 | (1<<RXCIE0) | (1<<TXCIE0); // enable interrupts
8

9 pinMode(sensorPowerPin, OUTPUT);
10 digitalWrite(sensorPowerPin, HIGH); // turn sensor ON
11

12 pinMode(sensorDataPin, INPUT_PULLUP);
13

14 pinMode(ledPin, OUTPUT);
15 digitalWrite(ledPin, LOW);
16 }

Listing 17: Smart lighting application RX - Arduino with manual energy saving - setup
function

A second modification was to manually turn off the presence sensor when not in

use. In the Céu implementation, the driver d-sensor already turns off the sensor based

on its lexical scope. Finally, the application puts the MCU in sleep mode while waiting

three seconds (ln 21-22) using the watch dog timer to control the passage of time. The

MCU can also be woken up via serial.

1 ISR(USART_RX_vect) {
2 char data = UDR0;
3 if (data == ’1’) {
4 presenceDetectionEnabled = true;
5 } else if (data == ’0’) {
6 presenceDetectionEnabled = false;
7 }
8 usartReceived = true;
9 }

Listing 18: Smart lighting application RX - Arduino with manual energy saving - ISR

56

1 void loop() {
2 attachInterrupt(digitalPinToInterrupt(sensorDataPin),

presenceChangedISR, RISING);
3 LowPower.idle(SLEEP_FOREVER, ADC_OFF, TIMER2_OFF, TIMER1_OFF,

TIMER0_OFF, SPI_OFF, USART0_ON, TWI_OFF);
4

5 if (usartReceived) {
6 if (presenceDetectionEnabled) {
7 digitalWrite(ledPin, HIGH);
8 digitalWrite(sensorPowerPin, LOW);
9 } else {

10 digitalWrite(ledPin, LOW);
11 digitalWrite(sensorPowerPin, HIGH);
12 }
13

14 usartReceived = false;
15 } else {
16 detachInterrupt(0);
17

18 digitalWrite(sensorPowerPin, LOW); // turn sensor off
19 digitalWrite(ledPin, HIGH); // turn LED on
20

21 LowPower.idle(SLEEP_2S, ADC_OFF, TIMER2_OFF, TIMER1_OFF,
TIMER0_OFF, SPI_OFF, USART0_ON, TWI_OFF);

22 LowPower.idle(SLEEP_1S, ADC_OFF, TIMER2_OFF, TIMER1_OFF,
TIMER0_OFF, SPI_OFF, USART0_ON, TWI_OFF);

23

24 digitalWrite(ledPin, LOW);
25 digitalWrite(sensorPowerPin, HIGH);
26 }
27 }

Listing 19: Smart lighting application RX - Arduino with manual energy saving - loop

Céu implementation used 43% of the total device memory while the Arduino im-

plementations used a maximum of 12% (see Table 5). Our manual memory optimization

decreased the 43% memory usage to 31.7%. From a code readability point of view, Céu

implementation has 32 fewer code lines when compared to the power-saving Arduino

implementation, and it does not introduce hardware complexity, register manipulation,

energy savings, control variables and ISR into the application code.

57

ROM RAM Total
Arduino 12% 10% 12%
Power-saving Arduino 5% 0.7% 5%
Céu 44% 22% 43%
Céu with manual memory optimization 31.7% 20.5% 31%

Table 5: Memory usage of the smart lighting RX application

To estimate the average power consumption of this application, we consider the

following usage routine:

1. The application remains idle for two hours, in its initial state;

2. A presence is detected and the LED turns on for 3 seconds;

3. The application returns to its initial state;

4. After an hour, it receives the message “0”. The presence detection functionality is

disabled and LED is turned off;

5. After an hour, the device receives a “1” message.

Table 6 presents the consumption of each application state considering the usage rou-

tine presented12. As with the TX module, we disregard the initial states of the HC-05

Bluetooth module. The most power-consuming states are those in which HC-05 is active

receiving a message. The energy savings achieved in these states are due to the ky-036

turning off. In other states, power savings are due to the MCU’s sleep modes.

Power consumption (mA)
Figure 18

state
Application state Arduino

Power-saving
Arduino

Céu Duration

A Idle 10.5 7.5 7.5 2hrs

B
LED ON because
of a presence detection

15.75 10 10 3s

A Idle 10.5 7.5 7.5 1h
- Receiving message “0” 26 21 21 5s
C LED OFF 10.5 5.6 5.6 1h
- Receiving message “1” 26.65 23.5 23.5 5s

Table 6: Power consumption of the smart lighting RX application

12As with the TX module, the consumption of each state is not static due to the HC-05 Bluetooth
module. However, to simplify data visualization, Table 6 shows the average consumption for each state.

58

The implementation in Céu consumes approximately 33% less energy than the

Arduino implementation, and has a battery life of fifteen days if we consider a 2600mAh

battery. The Arduino implementation would execute for ten days.

Céu implementation saved almost as much energy as the implementation in Ar-

duino with manual power management, despite turning off different MCU elements during

state B (Figure 18). While in this state, the MCU goes into sleep mode leaving the US-

ART hardware and a timer on. The implementation in Céu and Arduino use different

timers (respectively the watch dog time and timer 1). Even both implementations ap-

plying the same sleep mode, keeping different hardware on generate a difference in the

consumption, however, they are still very similar, with the difference of some microamps.

59

5.2 Humidity and moisture sensor device

The second application collects the air humidity and the soil moisture and trans-

mits it via radio. This type of application is used in agriculture and several works propose

the implementation of cheap and energy efficient alternatives [40] [41] [42]. We used these

works as support for choosing each hardware to use here.

The sensor used to obtain air humidity is the DHT11, already presented in Section

4.3. For the soil moisture, we used the FC-28 (Figure 20(a)), which is composed by two

pieces: a sensor probe and a comparator module. The sensor probe (indicated by number

1 in the figure) must remain buried in the soil and measures the potential difference that

varies depending on moisture.

(a) FC-28 soil moisture sensor (b) nRF24l01+

Figure 20: Hardware used in the second application

The second piece (indicated by number two) is a comparator module that checks

the value measured by the sensor probe and generates a digital signal based on a pre-

defined threshold. This threshold can be customized using the module’s potentiometer. In

addition to the digital output, the module also has an analog output. For this application,

we only used the analog pin. For transmission we used the nRF24l01+ transceiver (Figure

20(b)).

Figure 21(a) presents a simplified schematic of the device, and Figure 21(b) shows

a more detailed view of the circuit. The humidity sensor is powered directly by 3.7 volts

as well as the Mini Ultra 8Mhz. However, 3.7 volts could damage the nRF24l01+ module,

as its recommended maximum voltage is 3.6 volts [15]. Therefore, the radio is powered by

a prototyping board pin that provides 3.3 volts. At last, the moisture sensor is powered

by a digital output pin, which allows the application to turn it on and off.

60

(a) Simplified schematic

(b) Detailed circuit

Figure 21: Circuit of humidity and moisture sensor device

Listings 20, 21 and 22 present the three implementations of the application. All

of them have had parts omitted for simplicity. The omitted parts are responsible for

importing libraries/drivers and configuring the nRF24l01+ radio and the DHT11 sensor.

The three implementations turned out to be very similar, and all can be considered easy

to read. This can be justified due to the sequential nature of the application.

The Arduino implementation uses the blocking operation delay to wait two sec-

onds and keeps the sensor on all the time. The energy-saving implementation, on the

other hand, manually keeps the sensor off when not in use, setting its power pin as HIGH

and LOW manually. The two-second delay has also been optimized: instead of using delay,

we put the Arduino into its deepest sleep mode (“power down”) for two seconds. Finally,

the Céu implementation uses the a-sensor driver to keep the analog sensor on only during

its use, transparently. Furthermore, the language puts the MCU in sleep mode during

the two-second waiting.

61

1 void loop() {
2 delay(2000);
3

4 float hum = dht.readHumidity();
5

6 int sensorValue = analogRead(A0);
7

8 char str[9];
9 sprintf(str, "%4d%4d", (int)(hum*100), sensorValue);

10 radio.write(&str, 9);
11 }

Listing 20: Humidity and moisture sensor node - Arduino implementation

1 void loop() {
2 LowPower.powerDown(SLEEP_2S, ADC_OFF, BOD_OFF);
3

4 float hum = dht.readHumidity();
5

6 digitalWrite(4, HIGH);
7 delay(50);
8 int sensorValue = analogRead(A0);
9 digitalWrite(4, LOW);

10

11 char str[9];
12 sprintf(str, "%4d%4d", (int)(hum*100), sensorValue);
13 radio.write(&str, 9);
14 }

Listing 21: Humidity and moisture sensor node - Arduino implementation with manual
power saving

1 loop do
2 await 2s; // replace with Wdt(2000); to use the watchdog timer
3 call DHT_Read(3,&temp,&hum);
4

5 var int asensor_value;
6 do
7 asensor_value = await ASensor_Get(_A0, 4, 50);
8 end
9

10 var[9] byte str = [];
11 call String_Format(&str, hum, asensor_value);
12 await NRF24L01_Tx(&nrf, &str);
13 end

Listing 22: Humidity and moisture sensor node - Céu implementation

62

The consumption of each implementation is shown in Table 7. We could observe

that the second implementation (in Arduino with energy savings) managed to save more

power than the implementation in Céu during the waiting period. This happens because

the Céu wall clock driver uses TIMER 1, that is not available in the MCU deepest sleep

mode (power down mode). This way, the Céu power management driver puts the MCU

in the deepest sleep mode that still keeps TIMER 1 on: the “idle” mode.

The Arduino implementation uses the watchdog timer, which remains on while the

microcontroller is in “power-down” mode. Alternatively, we could use the Céu watch dog

timer driver to put the MCU into the “power down” mode during the two second waiting.

However, this brings energy consumption concerns to the application layer. To avoid this,

future works could try to use the watchdog timer transparently through the wall clock

driver.

Power consumption (mA)
Arduino Power-saving Arduino Céu Duration

Waiting 9 2.4 4.16 2s
Sensor reading 9.87 9.87 5.2 25ms or 75ms
Radio TX 20.3 18.6 16.3 1ms

Table 7: Power consumption of the humidity and moisture sensor node

The implementation in Céu occupied 82.9% of the device memory, against 17%

occupation of Arduino implementation. This increase can limit the adoption of the Céu

language in memory-constrained projects. It can also limit the implementation of more

complex communication protocols, as they require the construction of bigger drivers.

ROM RAM Total
Arduino 18% 3.80% 17%
Céu 85.7% 40.7% 82.9%
Céu with manual memory optimization 85.1% 40.7% 82.4%

Table 8: Memory usage of the humidity and moisture sensor node

Overall, we observed a higher memory usage by Céu applications that use a lot

of drivers. This application, for example, uses the wclock, dht11, asensor, int0, nrf24l01

drivers directly, in addition to spi and asensor drivers indirectly13. The nrf24l01 and spi

drivers are used to send the message via radio, and among the drivers used, they have the

most impact on memory consumption. To illustrate it, removing the radio communication

13They are used by nrf24l01 and asensor drivers, respectively

63

from the application resulted at 37% of program storage space usage (ROM) and 20% of

dynamic memory usage (RAM).

Finally, our memory optimization was not very effective, saving only 172 bytes.

The savings were due to the removal of unused code/calls from the wclock driver. We

believe that deeper optimizations can be performed in future works.

64

CONCLUSION

This dissertation evaluated the use of the programming language Céu and its

power-management mechanism in the development of embedded applications. This anal-

ysis was done with the implementation of two embedded software applications: a smart

lighting system, and a moisture collector node. They can be considered simple applica-

tions, but they illustrate common patterns in embedded software applications. Both of

them were implemented in Céu and Arduino, a widely used programming language in the

embedded software community. The implementations were then compared in relation to

their power consumption, memory usage and code readability.

It was possible to verify that applications that have some concurrent behavior,

such as blinking two LEDs at different frequencies, become easier to read and write when

implemented in Céu. This improvement was observed in the receiver module of the smart

lighting application, which waits to receive a message via Bluetooth while waiting for

a sensor to detect a presence. We also noted that all applications written in Céu used

more memory than the ones written in Arduino. The biggest increase was observed in the

moisture collector application, where the implementation in Céu uses 82.9% of device’s

memory, while the implementation in Arduino only used 17%. This increase can limit

the language adoption in the development of resource-constrained devices. It can also

hamper the implementation of more complex drivers, such as radio drivers with complex

network protocols.

Regarding power savings, in both applications the language Céu was able to iden-

tify the idle periods and apply a power saving mode, making the application save energy

transparently. Additionally, the developed drivers for digital and analog sensors kept the

sensors off when not in use, saving even more energy. In the moisture sensor application,

however, the Arduino was not put into the deepest sleep mode when using the wall clock

time driver. Alternatively, we could use the watchdog timer driver for optimal savings.

Future works include memory usage optimization, development of drivers for more

peripherals (such as RFID-RC522), and use the watchdog timer transparently, allowing

optimal energy savings in a completely transparent way. It’s also important to mention

that Céu-Arduino lacks documentation, which also hinders the adoption of the language.

65

REFERÊNCIAS

[1] STROUSTRUP, B. Abstraction and the C++ machine model. In: SPRINGER. In-

ternational Conference on Embedded Software and Systems. [S.l.], 2004. p. 1–13.

[2] EMBEDDED.COM. Using power analysis to optimize battery life in IoT devices. Abril

2019. Dispońıvel em: <https://www.embedded.com/using-power-analysis-to-optimize-

battery-life-in-iot-devices/>. Acesso em: 7 out. 2020.

[3] SCHWARTZ, M. How to Run an Arduino for Years on a Battery. Julho 2020.

Dispońıvel em: <https://makecademy.com/arduino-battery>. Acesso em: 7 out. 2020.

[4] SANT’ANNA, F. et al. Transparent standby for low-power, resource-constrained em-

bedded systems: a programming language-based approach (short wip paper). In: ACM.

ACM SIGPLAN Notices. [S.l.], 2018. v. 53, n. 6, p. 94–98.

[5] EDNA/IEA. Energy Efficiency of Internet of Things - Policy Opinions. Julho

2016. Dispońıvel em: <https://www.iea-4e.org/document/388/energy-efficiency-of-

the-internet-of-things-policy-options>. Acesso em: 23 jul. 2019.

[6] IEA. G20 Energy Efficiency Action Plan: Networked Devices. Dispońıvel

em: <https://www.iea-4e.org/projects/g20-energy-efficiency-action-plan-networked-

devices>. Acesso em: 23 jul. 2019.

[7] SANT’ANNA, F. Safe System-level Concurrency on Resource-Constrained Nodes with

Céu. Orientador: Roberto Ierusalimschy. Co-orientadora: Noemi de La Roque Ro-

driguez. 2013. 86f. Tese (Doutorado) - Departamento de Informática, Pontif́ıcia Uni-

versidade Católica do Rio de Janeiro, Rio de Janeiro, 2013.

[8] BRANCO, A. et al. Terra: Flexibility and safety in wireless sensor networks. ACM

Trans. Sen. Netw., ACM, New York, NY, USA, v. 11, n. 4, p. 59:1–59:27, set. 2015.

ISSN 1550-4859. Dispońıvel em: <http://doi.acm.org/10.1145/2811267>.

[9] SANT’ANNA, F. et al. Safe system-level concurrency on resource-constrained nodes.

In: ACM. Proceedings of SenSys’13. [S.l.], 2013.

66

[10] SANT’ANNA, F. Structured synchronous reactive programming for game

development-case study: On rewriting Pingus from C++ to céu. In: IEEE. 2018

17th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames).

[S.l.], 2018. p. 240–24009.

[11] SANT’ANNA, F. et al. Structured Reactive Programming with Céu. 2014. Workshop

on Reactive and Event-based Languages & Systems (REBLS’14).

[12] SANTOS, R. et al. Céu-Media: Local Inter-Media Synchronization Using Céu. In:

Proceedings of WebMedia’16. New York, NY, USA: ACM, 2016. p. 143–150. ISBN 978-

1-4503-4512-5. Dispońıvel em: <http://doi.acm.org/10.1145/2976796.2976856>.

[13] SANT’ANNA, F.; SZTAJNBERG, A. Where Do Events Come From? — Reactive

and Energy-Efficient Programming From The Ground Up. 2018. Workshop on Reactive

and Event-based Languages & Systems (REBLS’18).

[14] DHT-11 datasheet. Dispońıvel em: <https://www.filipeflop.com/img/files/download/

Datasheet DHT11.pdf>. Acesso em 8 ago. 2021.

[15] SEMICONDUCTOR, N. nRF24l01+ datasheet. Dispońıvel em:

<https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss Prelimina

ry Product Specification v1 0.pdf>. Acesso em: 21 ago. 2021.

[16] SCHOEFFLER, M. How to use the GY-521 module (MPU-6050 breakout board) with

the Arduino Uno. Dispońıvel em: <https://mschoeffler.com/2017/10/05/tutorial-how-

to-use-the-gy-521-module-mpu-6050-breakout-board-with-the-arduino-uno/>. Acesso

em 25 out. 2021.

[17] INVENSENSE. MPU-6000/MPU-6050 Register Map and Descriptions. Dispońıvel

em: <https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-

Map1.pdf>. Acesso em: 8 ago. 2019.

[18] BAEK, W.; CHILIMBI, T. M. A framework for supporting energy-conscious pro-

gramming using controlled approximation. In: ACM. ACM Sigplan Notices. [S.l.], 2010.

v. 45, n. 6, p. 198–209.

67

[19] FLINN, J.; SATYANARAYANAN, M. Managing battery lifetime with energy-aware

adaptation. ACM Transactions on Computer Systems (TOCS), ACM, v. 22, n. 2, p.

137–179, 2004.

[20] BARKER, P.; HAMMOUDEH, M. A survey on low power network protocols for the

internet of things and wireless sensor networks. In: ACM. Proceedings of the Interna-

tional Conference on Future Networks and Distributed Systems. [S.l.], 2017. p. 44.

[21] FRÖHLICH, A. A. A comprehensive approach to power management in embedded

systems. International Journal of Distributed Sensor Networks, SAGE Publications

Sage UK: London, England, v. 7, n. 1, p. 807091, 2011.

[22] SANT’ANNA, F. Ceu: A reactive language for wireless sensor networks. In: Pro-

ceedings of the ACM SenSys. [S.l.: s.n.], 2011. v. 11.

[23] GAUR, P.; TAHILIANI, M. P. Operating systems for iot devices: A critical survey.

In: IEEE. 2015 IEEE Region 10 Symposium. [S.l.], 2015. p. 33–36.

[24] SITE do Sistema Operacional Contiki. Dispońıvel em: <http://www.contiki-

os.org/>. Acesso em: 8 ago. 2019.

[25] DUNKELS, A. The contikimac radio duty cycling protocol. Swedish Institute of

Computer Science, 2011.

[26] BERRY, G. Real time programming: Special purpose or general purpose languages.

1989.

[27] SANT’ANNA, F. Céu programming language documentation. 2018. Dispońıvel em:

<https://ceu-lang.github.io/ceu/out/manual/v0.30>. Acesso em: 19 out. 2020.

[28] ARDUINO. Arduino language reference. Dispońıvel em:

<https://www.arduino.cc/reference/en/>. Acesso em: 26 jul. 2019.

[29] SIMAS, G. Aplicação em Sistemas Distribúıdos utilizando biblioteca e driver próprios,

baseados em interrupções desenvolvido em Céu para o microcontrolador Arduino. Ori-

entadora: Ana Lúcia de Moura. 2018. 39f. Projeto Final (Graduação de Engenharia da

Computação) - Departamento de Informática, Pontif́ıcia Universidade Católica do Rio

de Janeiro, Rio de Janeiro.

68

[30] BOSTON, E. Estimating and measuring power in embedded systems. September 2010.

Dispońıvel em: <https://youtu.be/Ryib2tT2-bA>. Acesso em: 19 out. 2020.

[31] TECNOLOGIES, K. Device current waveform analyzer. Dispońıvel

em: <https://www.keysight.com/en/pc-2633352/device-current-waveform-

analyzers?cc=USlc=eng>. Acesso em: 27 out. 2020.

[32] KEITHLEY. Determining power consumption and battery life in

low power portable IoT devices webinar. April 2020. Dispońıvel em:

<https://www.tek.com/webinar/determining-power-consumption-and-battery-life-

in-low-power–portable-iot–devices-webinar>. Acesso em: 20 out. 2020.

[33] CORGITRONICS. Power use of an Arduino and nRF24L01

using a Keithley 2208S. Fevereiro 2015. Dispońıvel em:

<https://www.youtube.com/watch?v=8ECNJPVHqe0t=293s>. Acesso em: 13

out. 2021.

[34] FORCETRONICS. Reducing the power consumption of

the nRF24L01 transceiver. Maio 2015. Dispońıvel em:

<https://www.youtube.com/watch?v=MvjpmsH2wKIlist=WLindex=28>. Acesso

em: 13 out. 2021.

[35] ARDUINO. Arduino foundations, memory. Dispońıvel em:

<https://www.arduino.cc/en/Tutorial/Foundations/Memory>. Acesso em: 1 jan.

2022.

[36] OLIVEIRA, D. et al. Evaluating code readability and legibility: An examination of

human-centric studies. In: 2020 IEEE International Conference on Software Mainte-

nance and Evolution (ICSME). [S.l.: s.n.], 2020. p. 348–359.

[37] FAKHOURY, S. et al. Improving source code readability: Theory and practice. In:

2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC).

[S.l.: s.n.], 2019. p. 2–12.

[38] PRECHELT, L. An empirical comparison of seven programming languages. Com-

puter, v. 33, n. 10, p. 23–29, 2000.

69

[39] BUSE, R. P.; WEIMER, W. R. Learning a metric for code readability. IEEE Trans-

actions on Software Engineering, v. 36, n. 4, p. 546–558, 2010.

[40] CARVALHO, M. S. de. Sensor para monitoramento de umidade do solo utilizando

energia solar. 2016. 46 f. Trabalho de Conclusão de Curso (Bacharelado em Engen-

haria de Software) - Curso de Engenharia de Software, Universidade Federal do Ceará,

Quixadá, 2016.

[41] DINIZ, A. M. Sistema automatizado de aquisição, em tempo real, de umidade e

temperatura do solo na irrigação. Orientador: Márcio Antônio Vilas Boas. 2017. 60 f.

Tese (Doutorado) - Programa de Pós-Graduação em Engenharia Agŕıcola, Universidade

Estadual do Oeste do Paraná, Cascavel, 2017.

[42] AZETA, J. et al. Design of a wireless communication drip irrigation system using

nRF24L01 technology.

