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“Would you tell me, please, which way I ought to go from here?

That depends a good deal on where you want to get to.”

Charles Lutwidge Dodgson (Lewis Carroll)



RESUMO

RODRIGUES, Victor Hugo Pereira. A Global Exact Differentiation Approach for Output-
feedback Sliding Mode and Adaptive Control. 172 f. Dissertação de Mestrado (Mestrado
em Ciências da Engenharia Eletrônica) - Faculdade de Engenharia, Universidade do Es-
tado do Rio de Janeiro (UERJ), Rio de Janeiro, 2018.

Nesta dissertação, um diferenciador global baseado em modos deslizantes de or-

dem superior (HOSM) com ganhos adaptativos é desenvolvido para resolver o problema

de rastreamento usando apenas informações de entrada-sáıda para uma classe ampla de

sistemas não-lineares com perturbações e incertezas paramétricas. O estado da planta não

é medido de modo que um estimador para a norma do estado é projetado para majorar

os distúrbios dependentes do estado e adaptar dinamicamente os ganhos do diferencia-

dor proposto. Propriedades de estabilidade e o rastreamento exato e robusto podem ser

obtidos quando os diferenciadores adaptativos baseados em modos deslizantes de ordem

superior são utilizados na realimentação de sáıda. Simulações numéricas e experimentos

são apresentados para diferentes controladores, tais como: controle de modo deslizante

de primeira ordem, controle de modo deslizante de primeira ordem com função de moni-

toração, modos de deslizamento de terminal, twisting, super-twisting, super-twisting com

ganhos variáveis, controle de modo deslizante quase cont́ınuo e controle vetorial unitário.

Além disso, combinamos o diferenciador global e ganhos dinâmicos com o clássico esque-

mas de controle adaptativo por modelo de referência (MRAC) para resolver o problema

de rastreamento de trajetória via realimentação de sáıda para plantas lineares, incertas e

de grau relativo arbitrário. Pela primeira vez, uma forma fechada é dada para controle

adaptativo por modelo de referência para resolver o problema associado a plantas de grau

relativo arbitrário.

Palavras-chave: Controle por Modo Deslizante. Modo Deslizante de Ordem Superior.

Controle Adaptativo por Modelo de Referência. Observador da Norma. Função de Mo-

nitoração. Rastreamento Exato. Estabilidade Global e Semi-Global.



ABSTRACT

RODRIGUES, Victor Hugo Pereira. A Global Exact Differentiation Approach for Output-
feedback Sliding Mode and Adaptive Control. 172 p. Master Thesis (Master in Science of
Electronic Engineering) - Engineering Faculty, State University of Rio de Janeiro (UERJ),
Rio de Janeiro, 2018.

In this thesis, a higher-order sliding mode (HOSM) based global differentiators

with adaptive gains is developed to address the tracking control problem using only

input-output information of a wider class of nonlinear systems with disturbances and

parametric uncertainties. The state of the plant is assumed unmeasured so that a norm

state estimator is designed to bound the state-dependent disturbances and dynamically

adapt the gains of the proposed differentiator. Stability properties and robust exact

tracking can be achieved when the proposed adaptive HOSM based differentiators for

output-feedback are applied. Numerical simulations and experiments are presented for

different control designs, such as: first-order sliding mode control, first-order sliding mode

control with monitoring function, terminal sliding modes, twisting, super-twisting, vari-

able gain super-twisting algorithm, nested sliding mode control, quasi-continuous HOSM

finite-time controllers and unit vector control. Moreover, we combine a global differenti-

ator based on HOSM and dynamic gains with classical model reference adaptive control

(MRAC) schemes to solve the problem of trajectory tracking via output feedback for un-

certain linear plants of arbitrary relative degree. For the first time a closed form is given

by MRAC to solve the problem associated to plants of arbitrary relative degree.

Keywords: Sliding Mode Control. Higher Order Sliding Mode. Model Reference Adaptive

Control. Norm Observer. Monitoring Function. Exact Tracking. Global and Semi-Global

Stability.
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INTRODUCTION

Robust exact tracking control for uncertain systems is a longstanding problem.

The most common way to solve this problem is using sliding mode control (SMC) [1–

7]. In some papers ensuring finite-time exact tracking, it is supposed that the matched

uncertainties are bounded [2,3] or they can be bounded by unknown constant bounds [4,5].

The presence of unmatched perturbations and uncertainties can also be found in [8]. On

the other hand, the SMC design requires the knowledge of the system state vector or its

estimate by using observers or differentiators.

The use of output-feedback SMC for exact tracking of disturbed systems with

arbitrary relative degree is thus a challenging problem in this context [6]. This scenario

is even more problematic when global stability properties are also pursued.

In [9,10], high-gain observers (HGOs) were used to generate the sliding variable and

obtain output-feedback controllers. The result obtained in [9] is global but, nevertheless,

only linear systems and matched disturbances were considered. In [2,3,11,12], higher-order

sliding mode (HOSM) differentiators have been employed for exact state estimation and

control. Such HOSM differentiators use constant [2, 3] or time-varying gains [11–13]. As

a result for any Lipschitz signal, exact derivative of arbitrary order is obtained by HOSM

differentiators. In [11] the authors present conditions for the existence of time-varying

gains which preserve the HOSM differentiation and accuracy of signals with unbounded

higher derivatives. Hybrid estimation schemes combining lead filters (or HGOs) and

HOSM differentiators can also be found in the literature [14].

The main problems with HGOs and the current versions of HOSM differentiators

are:

• HGO based output-feedback control [9, 10] achieves global or semi-global stability

only with residual errors;

• HOSM differentiators with constant gains [2, 3] cannot guarantee global stability;

• The time-varying gains in [11,12] can decrease when used in closed-loop since the va-

riable bound depends on the state vector (which is not available in output-feedback

scenarios), whereas in [13] they must be made strictly increasing to work over un-

bounded operation regions;
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• The hybrid switching scheme in [14] applies two estimators (lead filter plus HOSM

differentiators) running in parallel, which is not necessary to obtain global stability.

Finally, the works [2,14] considered only uniformly bounded matched disturbances.

As mentioned before, the authors of [4,5] (see also references therein) envisaged approaches

to circumvent exogenous disturbances with unknown constant bounds in the context of

adaptive SMC. However, the price to be paid against the overestimation for the controller

gain is the loss of the sliding motion thus, residual errors are implied.

In the Chapter 1 , we introduce a global exact differentiator with dynamic gains

and then apply it to the global exact tracking problem via output-feedback. The main

contributions are the following:

• We propose a new output-feedback strategy for disturbance domination and for dif-

ferentiator gains adaptation based on state-norm observers [15]. Such state-norm

observers are derived from the input-output filters commonly used in adaptive con-

trol [16];

• The proposed gains of the global differentiator are decreasing together with the

system states and, consequently, the precision of the tracking is growing, while

preserving in theory the globality and the sliding mode occurrence. In practice, if

the gains decrease, the sensitivity of the overall closed-loop system is reduced [11];

For the first time, a HOSM based global exact differentiator is developed, guaran-

teeing global exponential stability when used in closed-loop control. The construction

of a global upper bound for the derivative of the system states using only input-output

information is derived to compute the dynamic gains of the proposed differentiator. Mat-

ched disturbances which can grow linearly with the unmeasured state and unmatched

time-varying disturbances neglected before in [4, 5, 14] are now coped with.

In general, a sliding variable of relative degree one with respect to the control

signal must be chosen for the sliding surface design in first-order sliding mode controllers.

Higher-Order Sliding Mode (HOSM) algorithms rise to remove this condition and allows

for an arbitrary relative degree between the sliding variable and the control signal [6].

One of the main uses of HOSM is the robust and finite-time differentiators [17] commonly

applied to compute exactly the sliding variable or its higher time-derivatives.
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Real-time differentiation is a classical problem in the field of control and estimation,

with different applications such as output feedback and observer design [17–22]. The main

obstacle for the real-time differentiator implementation is the trade-off between accuracy

and robustness with respect to noise or discretization [23]. In particular, when used for

control feedback, such observers/differentiators demand high gains to accommodate the

plant uncertainties as well as to increase the domain of attraction, which in turns increase

the sensitivity of the closed-loop system to real world imperfections as noise, unmodeled

dynamics, discretization and switching delays [10]. This problem is even more challenging

when the higher time-derivatives related to the gains necessary to design the differentiators

are unknown or unmeasured and some kind of adaptation must be invoked [24,25].

In this context, we can find HOSM differentiators using fixed [2, 3, 26] or time-

varying gains [13, 27]. The advantages of applying variable gains is the possibility of

guaranteeing global/semi-global stability results rather than local stability only, and ob-

taining adaptive gains that may decrease together with the system states. Note that even

if semi-global results could be obtained with arbitrarily large constant gains to encompass

large initial conditions for the closed-loop signals, the price to be paid there is the unne-

cessarily large value kept fixed when the (error) states have already ultimately converged

to the origin. In practice, if the gains decrease, the sensitivity of the overall closed-loop

system is reduced while the precision of the tracking is growing [11, 23]. In addition, the

time-varying gains in [11,13,27] would not decrease when used in closed-loop feedback for

global stability purposes since the variable bound depends on the state variables (which

are not available in an output-feedback scenario), otherwise it must be made strictly in-

creasing to work over unbounded operation regions leading again to overestimation of the

gains.

In Chapter 2, we introduce a HOSM exact differentiator with adaptive gains ap-

plying it to the exact tracking problem via output feedback. We consider uncertain plants

with time-varying disturbances of unknown bounds and nonlinear terms with a linear

(unknown) growth condition with respect to the state variables. Based on the conditions

for the existence of variable gains presented in [11,28], we propose a new output-feedback

strategy for disturbance domination and for differentiator gains adaptation using swit-

ching monitoring functions [29]. Hybrid state-norm observers are also employed in the

sense of [30] in order to norm bound the unmeasured state preserving the HOSM diffe-
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rentiation and accuracy of signals with unbounded higher derivatives, while guaranteeing

global stability properties. The general methodology can be used to obtain a quite general

family of output-feedback sliding mode controllers, which is illustrated in our simulation

examples for the first order SMC case. An application example concerning the suppression

of wing rock oscillations of Slender Delta Wings for high angles of attack of the aircraft

is also presented to evaluate the proposed adaptive output-feedback control strategy.

The rejection of uncertainties and disturbances in nonlinear systems is a long las-

ting problem for which Sliding Mode Control (SMC) has shown to be a very efficient

solution [1, 31–33]. However, the so called “chattering phenomenon”represents the main

disadvantage of such control strategy. While in some applications a discontinuous control

signal can be implemented (e.g., in electric drives and converters in power electronics),

there are several control applications (e.g., some electromechanical systems and valves in

hydraulic actuators to name a few) which simply does not match with the “chattering

scenario”of non ideal first-order sliding mode control (FOSMC).

Controller designs using second-order sliding-mode (SOSM) concept [21,23,34–38]

has been proposed for chattering elimination and attenuation. These SOSM algorithms

can ensure finite-time convergence to zero of the sliding variable and its first derivative.

It can be found plenty of applications using SOSM based algorithms reported recently,

for instance: real-time differentiation [11,13,27], estimation of gasoline-engine parameters

[22, 39, 40], wind energy conversion optimization [41], control of 3-DOF helicopters [42],

control of induction motors [43], manipulator fault diagnosis [18], control of fuel-cells [20]

and fault tolerant control [44].

Probably the most popular SOSM algorithm is the super-twisting algorithm (STA).

STA is an absolutely continuous SOSM algorithm [23], for relative degree one sliding varia-

ble, that achieves the main properties of first order SMC provided the matched uncertain-

ties/disturbances are Lipschitz continuous with bounded gradients. Further implementa-

tion aspects of STA are studied in [19]. A multivariable extension of the super-twisting

sliding mode structure by using fixed-constant gains and state feedback was proposed

in [45].

The main motivation for adaptation is that the bounds of the unknown distur-

bances and uncertainties are often assumed known in SMC. However, overestimating

perturbations increases chattering. Possible solutions are to consider control laws with
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adaptive or varying gains. Adaptive versions of STA (for control and estimation) appear

in [11,13,46–49]. Some problems in the current adaptation schemes are:

• Monotonically increasing gains: disturbances may be still overestimated and chat-

tering increased since it goes against the key motivation of the algorithm which is

to reduce control gain [49,50];

• Increasing and decreasing gains: sliding modes may fail temporarily [48];

• Certainty equivalence principle: the convergence rate may become too slow [47];

• Time-varying gains: for global stability/convergence properties, it is needed to me-

asure the plant state vector and/or apply strictly increasing gains (chattering!)

[11,13,50];

• Equivalent control: known upper bounds for the disturbances derivatives are requi-

red [46].

In this sense, a variable gain STA (VGSTA) was presented in [51] with the pro-

mise of achieving exact compensation of smooth bounded uncertainties-disturbances with

bounded derivatives, assuming knowledge of some functions providing the bounds depen-

dents on the state variables. The VGSTA is a non homogeneous extension of the standard

STA. A time-invariant non smooth Lyapunov function [52] is used in order to demonstrate

convergence of the VGSTA.

The innovation of the Chapter 3 is to generalize the VGSTA results originally

proposed in [51]. There, relative degree one plants were considered and the control law

was designed under the assumption of the full-state measurement. In this Chapter, a

more general class of nonlinear systems with arbitrary relative degree are handled and

the control scheme is developed using only output feedback. Another important difference

is that the exact tracking problem is now considered rather than the stabilization only.

Exact tracking is specially difficulty if uncertain nonlinear systems are considered and the

control design must follow the output-feedback paradigm. For instance, in reference [53],

the authors have proposed an output-feedback control scheme which can only guarantee

practical tracking, i.e., the output error remains within a non null prescribed residual set.
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Our proposal is based on a (non) homogeneous exact differentiator with dynamic

gains recently introduced in [54, 55]. Our contribution applies state-norm observers [56]

to obtain the necessary information about the upper bound of the disturbances. This

information is then used for updating the gains of the higher-order sliding mode (HOSM)

differentiator and the controller gains of the VGSTA as well. In particular, the upper

bounds for the state-dependent disturbances are growing with the unmeasured state,

which makes the control and differentiation problems as well as the non local stability

analysis more challenging since unknown upper bounds are being assumed due to the

unmeasured plant state. It will be shown this class of disturbances is more general than

some recent papers in the field. We present a complete and rigorous stability proof for the

closed-loop system. A simulation example with an academic plant shows the convergence

properties of the proposed output-feedback VGSTA. Experimental results verify the new

adaptation method leads to control and differentiator gains which decrease together with

the system states, improving tracking precision and reducing in practice the sensitivity

of the overall scheme to measurement noise, unmodeled dynamics, switching delays and

numerical discretization. For the experimental tests, we use a real-world scenario that

consist in stabilizing the balance of a seesaw through the positioning of a linear servo cart

mounted on the seesaw to travel freely along its length.

In Chapter 4, we introduce a global exact differentiator with dynamic gains and

then apply it to the exact tracking problem via output-feedback for series of sliding modes

controllers. Based on the conditions for the existence of time-varying gains presented

in [11], we propose a new output-feedback methodology for disturbance domination and

for differentiator gains adaptation based on state-norm observers which preserves the

HOSM differentiation and accuracy of signals with unbounded higher derivatives. The

general methodology is applicable to obtain a quite general family of output-feedback

sliding mode controllers (including classical first-order SMC designs, finite-time controllers

and (dis)continuous HOSM based SMC), as illustrated in our simulation examples.

Moreover, the model reference adaptive control (MRAC) is one of the main appro-

aches to adaptive control. A reference model is chosen to generate the desired trajectory

that the plant output has to follow. The closed-loop plant is made up of an ordinary

feedback control law that contains the plant, a controller parametrized with respect to

a vector of unknown parameters and a learning mechanism that generates in an online
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fashion the controller parameter estimates [16].

MRAC schemes can be characterized as direct or indirect and with normalized or

unnormalized adaptive laws [16,57]. In both direct and indirect MRAC with normalized

adaptive laws, the control law, motivated from the known parameter case, is kept unchan-

ged. This design is based on the certainty equivalence principle [57], which allows the use

of a wide class of online parameter estimation that includes gradient, least-squares and

those based on Strictly Positive Real (SPR) Lyapunov design [16]. On the other hand, in

the case of MRAC schemes with unnormalized adaptive laws, the control parametrization

is modified to lead an error equation whose form allows the use of the SPR–Lyapunov

design approach for generating the adaptive law.

The design of direct MRAC schemes with unnormalized adaptive laws can be

obtained for plants with relative degree ρ = 1 , 2 , 3 (for more details, see [16, 58]). In

such approaches, derivatives of the plant output were not required, but were replaced by

filtered derivative signals. The case of ρ > 3 follows by using the same techniques as in the

case of ρ = 3, but it is in general omitted or is not so popular because of the complexity

of the control law that increases with the relative degree ρ of the plant [59]. The price

of not using explicitly exact differentiators was the real obstacle to derive simple and

attractive adaptive control schemes. As a result, it was not until the early 1990s (with

the appearance of backstepping [60]) that the interest by adaptive schemes for plants with

higher relative degrees were revived.

In the recent literature, L1 adaptive control [61] has risen as a modified and alter-

native MRAC architecture using an input-filtered control signal, a state-prediction loop

and high-gain adaptation laws to provide fast adaptation with guaranteed transient pro-

perties. Despite several publications report successful applications of L1 adaptive control,

some recent papers questioning the efficiency of that can be found in [62, 63]. Criticisms

include the inability to track exactly an arbitrary time-varying reference, the use of ex-

cessively high adaptation gains to decrease the tracking error, and the impossibility of

handling uncertain high-frequency gains [64]. Moreover, L1 adaptive control must be

structurally redesigned becoming much more complex for output feedback under higher

relative degrees [65, Chapter 4].

In Chapter 5, we introduce an output-feedback adaptive controller based on global

exact differentiators with dynamic gains [54] and then apply it to address the global
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and exact tracking problem for linear plants of arbitrary relative degree. For the first

time, a HOSM based differentiator is combined to an adaptive control scheme, while

guaranteeing global asymptotic stability when used in closed-loop feedback. Notice that

previous HOSM differentiators with fixed gains [17] would lead only to local stability

results. The construction of a global upper bound for the derivatives of the system

states using only input-output data by means of a state-norm observer [15] is derived to

compute the dynamic gains of the proposed differentiator. This general methodology is

applicable to MRAC as well as to other adaptive designs based on parameter projection

using switching σ–modification [16] or binary control concepts [66–68], allowing for leakage

[16] but eliminating the deleterious effects of the bursting phenomena [69].

In contrast to previous MRAC results, the new solution does not involve any

additional parametrization and filtering besides the global HOSM differentiator, being

thus close in structure and complexity to conventional solutions for unitary relative degree.

The simulation example illustrates the simplicity of our control design as well as its better

transient responses and less control effort when compared to classical MRAC schemes for

higher relative degrees.

At last, we present an application for the proposed output-feedback adaptive con-

troller to bilateral teleoperation [70–72], where the actions of the master are transmitted

to the slave system such that the latter has to behave as the former, according to the

model reference paradigm.

In Chapter 6, we solve the global exact output tracking problem for a class of

uncertain multi-input-multi-output (MIMO) nonlinear plants with nonuniform arbitrary

relative degree and disturbances. For the sake of comparisons, the class considered here

encompasses those in [3, 13, 26, 73, 74], with the benefit of guaranteeing global stability

properties. The result is achieved by generalizing to a multivariable framework the global

HOSM differentiation scheme originally proposed for SISO plants in [75–78]. The proposed

approach applies for an output-feedback multivariable extension of the variable gain super-

twisting algorithm (STA) – using norm-state observer for gain adaptation – to tackle a

rather general class of matched nonlinear disturbances which grow with the measured

and/or unmeasured states. This represents a significant extension of a recently proposed

non decoupled multivariable super-twisting algorithm [79], based on state-feedback with

fixed gains, to the case of output-feedback with variable gains. As a result, the error
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system becomes uniformly globally exponentially stable and ultimately converges to zero.

Novel conditions must be assumed for the MIMO case, which make the problem

hard to be solved. For example, it was assumed in [74] a known matrix multiplier Sp for

the high-frequency gain (HFG) matrix Kp such that KpSp+S
T
p K

T
p >0. Here, we consider

a diagonally stable assumption for the HFG matrix which is a less restrictive assumption

than the one raised in [74]. Furthermore, the hybrid switching scheme in [74] is restricted

to linear plants and applies two set of estimators (lead filters plus HOSM differentiators

with fixed gains) running in parallel, which is not necessary to obtain global stability. It

requires at least the double of state variables when compared to our proposed method.

Simulations show the simplicity of our solution.

Preliminaries: Throughout the text, all k’s denote positive constants. The terms

π(t) denote exponentially decaying functions, i.e., |π(t)| ≤Ke−λt,∀t, where K possibly

depends on the system initial conditions and λ is a generic positive constant. The notation

| · | stands for the Euclidean norm for vectors, or the induced norm for matrices, whereas

||ft|| denotes the L∞e norm of a signal f(t), i.e., sup0≤τ≤t |f(τ)|. Input-to-State Stability

(Stable) – ISS definition as well as functions of class K, K∞ and KL are defined according

to [80]. Here, Filippov’s definition for the solution of discontinuous differential equations

is assumed [81]. For the sake of simplicity, “s” will represent either the Laplace variable

or the differential operator (d/dt), according to the context.

To facilitate the reader’s life, each chapter has its own assumptions

list and it is presented at the beginning of each chapter :)
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1 FIRST ORDER SLIDING MODE CONTROL

In this Chapter we introduce a global differentiator based on higher-order sli-

ding modes (HOSM) and dynamic gains to solve the problem of trajectory tracking via

output-feedback for a class of uncertain nonlinear plants with arbitrary relative degree

and disturbances. Norm observers for the unmeasured state are employed to dominate

the disturbances as well as to adapt the gains of the proposed differentiator since the non-

linearities may be state-dependent and time-varying. Uniform global stability and robust

exact tracking are guaranteed employing the proposed HOSM based exact differentiator.

The obtained results are not restricted to first-order sliding mode control feedback, but

applies for second order sliding mode algorithms (twisting, super-twisting and variable

gain super-twisting) as well as quasi-continuous HOSM finite-time controllers. Simula-

tions with an aircraft pitch-control application illustrate the claimed properties, even in

the presence of measurement noise.

1.1 Problem Statement

Consider an uncertain nonlinear plant described by:

ẋ = Apx+Bp[u+ d(x, t)] + φ(t) , y = Hpx , (1)

where x ∈ Rn is the state, u ∈ R is the input, y ∈ R is the output, d(x, t)∈R is a state

dependent uncertain disturbance and φ(t) is a time-varying uncertain unmatched external

disturbance. The term “unmatched” refers to φ(t) not contained in the range space of Bp,

otherwise φ(t) could be directly incorporated into the “matched” disturbance d(x, t). The

uncertain matrices Ap, Bp and Hp belong to some compact set, such that the necessary

uncertainty bounds to be defined later are available for design.

The following assumptions are made in this chapter:

(A1) The transfer functionG(s) = Hp(sI−Ap)−1Bp is minimum phase.

(A2) The pairs (Ap, Bp) and (Ap, Hp) are controllable and observable, respectively.

(A3) The transfer function G(s) has a known relative degree ρ and order n. The

high frequency gain (HFG) Kp ∈Rsatisfies Kp = lims→∞ s
ρG(s) = HpA

ρ−1
p Bp . Without

loss of generality, we assume that Kp > 0.
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(A4) The input disturbance d(x, t) is assumed to be uncertain, locally integrable

and norm bounded by |d(x, t)| ≤ kx|x| + kd, ∀x, t, where kx, kd ≥ 0 are known scalars.

The unmatched disturbance φ(t) is assumed sufficiently smooth. Moreover, there exists

a known constant kφ≥0 such that |φ(i)(t)| ≤ kφ, ∀i = 0, . . . , ρ.

Assumptions (A1)–(A3) are usual in model reference adaptive control (MRAC)

[16]. From (A4), we note that the relative degree of (1) depends only on the linear part,

being independent of the disturbances d and φ. In addition, the class of nonlinear distur-

bances are more general than those considered in [2,4,5,14] and represents a challenge in

the context of global output-feedback SMC.

Let the reference signal ym(t) ∈ R be generated by the following reference model

ym = Wm(s) r , Wm(s)=(s+γm)−1L−1
m (s) , γm>0, (2)

where r(t) ∈ R is an arbitrary uniformly bounded piecewise continuous reference signal

and

Lm(s)=s(ρ−1) + lρ−2s
(ρ−2) + · · ·+ l1s+ l0 , (3)

with Lm(s) being a Hurwitz polynomial. The transfer function matrix Wm(s) has the

same relative degree as G(s) and its HFG is the unity.

The main objective is to find a control law u such that the output error

e(t) := y(t)− ym(t) (4)

is steered to zero, for arbitrary initial conditions.

The MRAC parametrization [16] using I/O filters is initially applied to obtain the

ideal matching control [16] denoted by u∗ and derive the dynamic error equations for the

error system. However, we are not trying to recover any particular property from MRAC.

In this sense, when the plant is known and d(t) ≡ 0, φ(t)≡0, a control law which achieves

the matching between the closed-loop transfer function matrix and Wm(s) is given by

u∗ = θ∗
T

ω , θ∗ =
[
θ∗

T

1 θ∗
T

2 θ∗3 θ
∗
4

]T
, (5)

where θ∗ is the parameter vector with θ∗1, θ
∗
2∈R(n−1) and θ∗3, θ

∗
4∈R. The regressor vector
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ω = [ωTu ωTy y r]T , wu, wy ∈ R(n−1) is obtained from I/O state variable filters given by:

ω̇u = Φωu + Γu , ω̇y = Φωy + Γy , (6)

where Φ ∈ R(n−1)×(n−1) is Hurwitz and Γ ∈ R(n−1) is chosen such that the pair (Φ, Γ)

is controllable. The matching conditions require that θ∗4 = K−1
p . Define the augmented

state vector

X = [xT , ωTu , ω
T
y ]T , (7)

with dynamics described by Ẋ=A0X+B0u+B′0d+Bφφ, and output y=H0X, where

A0 =


Ap 0 0

0 Φ 0

(ΓHp) 0 Φ

 , B0 =


Bp

Γ

0

 , B′0 =


Bp

0

0

 , (8)

BT
φ =

[
I 0 0

]
, H0 =

[
Hp 0 0

]
. (9)

Then, adding and subtractingB0θ
∗Tω and noting that there exist matrices Ω1 ∈ R(2n−2)×(3n−2)

and Ω2 ∈ R(2n−2) such that [16]

ω=Ω1X+Ω2r , (10)

one has

Ẋ=AcX +BcKp[θ
∗
4r + u− u∗] +B′0d+Bφφ , y=H0X , (11)

where Ac = A0 + B0θ
∗TΩ1 and Bc = B0θ

∗
4. Notice that (Ac, Bc, H0) is a nonminimal

realization of Wm(s). For analysis purposes, the reference model can be described by

Ẋm=AcXm +BcKp[θ
∗
4r − df ] +B′0d+Bφφ, ym=H0Xm , (12)

where the equivalent input disturbance df =Wd(s)d+Wφ(s)φ with

Wd(s) = [Wm(s)Kp]
−1H0 (sI−Ac)−1B′0 , (13)

Wφ(s) = [Wm(s)Kp]
−1H0 (sI − Ac)−1Bφ . (14)

Note that Wd(s) in (13) is a stable and proper transfer function and Wφ(s) in (14) is a

stable and possibly improper transfer function, so that derivatives of φ(t) may appear in
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the input channel. Following the steps given in [82], [Wm(s)Kp]
−1 = K̄ρs

ρ+K̄ρ−1s
ρ−1 +

. . .+K̄0, where K̄i ∈R, i= 0, . . . , ρ, are constants. By using the Markov parameters to

represent H0 (sI − Ac)−1Bφ=
H0Bφ
s

+
H0AcBφ

s2
+
H0A2

cBφ
s3

+. . . , the term df (t) can be rewritten

as

df := Kρ−1φ
(ρ−1) + · · ·+K1φ̇+Wp(s) ∗ φ+Wd(s) ∗ d , (15)

where ∗ denotes the convolution operator, Kj∈R1×n is given by

Kj =

ρ∑
i=j+1

K̄iH0A
i−j−1
c Bφ , j = 1, . . . , ρ− 1 , (16)

and Wp(s) is a stable and proper transfer function matrix

Wp(s) =

ρ∑
i=1

K̄iH0A
i−1
c Bφ +

ρ∑
i=0

K̄iH0A
i
c(sI − Ac)−1Bφ . (17)

Thus, the error dynamics with state

Xe := X −Xm (18)

can be written in the the state-space representation by

Ẋe = AcXe +BcKp[u− θ∗
T

ω + df ] , (19)

e = H0 Xe , (20)

or in the I/O form as: e = Wm(s)Kp

[
u− θ∗Tω + df

]
.

The importance of considering the augmented dynamics (11) with state X inclu-

ding the I/O filters (6) is not only to derive the full-error equation (19), but to create

an output-feedback framework which allow us to derive norm bounds for the unmeasu-

red state of a possibly unstable plant (1) and for the equivalent disturbance df (x, t), as

discussed in the next section. As a bonus, we use (19) in the proof of the main theorem

to state global stability by means of input-to-state properties of the closed-loop system,

without appealing to Lyapunov based analysis.



28

1.2 State-Norm Observer

Considering Assumption (A4) and applying [8, Lemma 3] to (11), it is possible to

find k∗x > 0 such that, for kx ∈ [0, k∗x], a norm bound for X and x can be obtained through

stable first order approximation filters (FOAFs) (see details in [8]). Thus, one has

|x(t)| , |X(t)| ≤ |x̂(t)|+ π̂(t) , (21)

x̂(t) :=
1

s+ λx
[c1(kd + kφ) + c2|ω(t)|] , (22)

with c1, c2, λx > 0 being appropriate constants that can be computed by the optimization

methods mentioned in [8]. Regarding the parameter λx in (22), it is defined by λx :=

γ0 − |B′0|kx, where |B′0|kx > 0 is a constant smaller than γ0 computed with B′0 given in

(8), kx of Assumption (A4) and γ0 > 0 being the stability margin of Ac in (11). Let {λi}
be the eigenvalues of Ac, the stability margin of Ac is defined by γ0 := mini[−Re(λi)].

In this sense, inequality (21)–(22) establishes that the norm observer estimate x̂(t)

provides a valid norm bound for the unmeasured state x of the uncertain and disturbed

plant, i.e., |x| ≤ |x̂| except for exponentially decaying terms due to the system initial

conditions, denoted here by π̂(t). From (21), we still can conclude the following norm

bound

|x(t)|, |X(t)| ≤ |x̂(t)|+ δ0 , ∀t ≥ T0 ,

valid after some finite time T0 > 0, for any arbitrarily small positive constant δ0 (inde-

pendent of initial conditions) since π̂(t) is an exponentially decreasing term.

Since we assume sufficient differentiability for φ and uniform boundedness for its

time derivatives, one can find a constant k̄φ > 0 such that |K1φ̇+ . . .+Kρ−1φ
(ρ−1)| ≤ k̄φ

and |df | ≤ k̄φ+ |Wp(s)∗φ|+ |Wd(s)∗d|. Moreover, from (A4) and (22), one has |d(x, t)| ≤
kxx̂(t)+kd, modulo π̂ term, and one can write |df | ≤ d̂f + π̂f , where π̂f is an exponentially

decreasing term,

d̂f (t) := k̄φ +
cf

s+ λf
[kφ + kxx̂(t) + kd] , (23)

and
cf

s+λf
is a FOAF designed for Wd(s) and Wp(s), with adequate positive constants cf

and λf . At the price of some conservatism, we can simplify the FOAF design by choosing

cf sufficiently large and λf sufficiently small.

Remark 1 (Norm Observer Initialization).According to (21), we can rewrite the upper
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bound |x̂(t)| ≥ |x(t)| − π̂(t). Let x̂ be the state of the minimal state-space realization for

the FOAF 1/(s+ λx) in (22):

˙̂x = −λxx̂+ [c1(Kd + kφ) + c2|ω|] .

For practical purposes, it is always possible to initialize the norm observer state with a

positive value x̂(0) > 0 in order to reduce the transient phase due to the term π̂(t) in

(21), such that the upper bound |x(t)| ≤ x̂(t) can be assured as soon as possible, i.e.,

∀t ≥ T0 and some finite time T0 > 0 arbitrarily small. It would be of particular interest

in order to provide faster convergence properties for the differentiator to be introduced

later on, although it is not needed to prove global stability for the overall closed-loop

scheme. Although the norm state estimation cannot be globally obtained in a fixed-time,

it is guaranteed after some finite time, which is unknown if no knowledge is assumed a

priori about the plant initial conditions (global results). y

1.3 Global Differentiator with Dynamic Gains

In what follows, a HOSM differentiator with coefficients being adapted using the

estimate for the norm of the state x provided in (21) is proposed to achieve global exact

estimation, i.e., exact differentiation of signals with any initial conditions and unbounded

higher derivatives.

Under the assumptions (A1)–(A4), the unmatched time-varying disturbance φ(t)

cannot change the relative degree of the unperturbed linear system (1), thus it is easy to

show that the nonlinear system (1) can be transformed into the normal form [80]:

η̇ = A0η + B0y , (24)

ξ̇ = Aρξ + BρKp[u+ de(x, t)] , y = Cρξ , (25)

where zT = [ηT ξT ] ∈ Rn with η ∈ R(n−ρ) being referred to the state of the inverse or

zero dynamics and ξ = [y ẏ . . . y(ρ−1)]T the state of the external dynamics. The triple

(Aρ, Bρ, Cρ) is in the Brunovsky’s controller form [80] and A0 is Hurwitz. The equivalent

input disturbance de(x, t) = d(x, t) +K−1
p

(
HpA

ρ
px+

∑ρ−1
i=0 HpA

ρ−1−i
p φ(i)

)
is affinely norm
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bounded by

|de(x, t)| ≤ κ1|x|+ κ2 , (26)

where κ2 > kd+K−1
p

∣∣∑ρ−1
i=0 HpA

ρ−1−i
p φ(i)

∣∣ and κ1 > kx+K−1
p

∣∣HpA
ρ
p

∣∣ are known constants.

We can conclude the following state-dependent upper bound for higher derivative (order

ρ) of the output signal

|y(ρ)| ≤ Kp [κ1|x|+ κ2 + |u|] . (27)

From (27) and (4), we can write

|e(ρ)(t)| ≤ L(x, t) = Kp [κ1|x|+ κ2 + |u|] + |y(ρ)
m (t)| . (28)

Now, assume that the control input satisfies

|u| ≤ k%%(t) ≤ κ3||Xt||+ κ4 , (29)

for constants k% , κ3 , κ4 > 0 and an appropriate continuous modulation function %(t) ≥ 0,

to be defined later on. Then, applying (21), we can obtain the following upper bound

with the norm observer variable x̂(t) in (21)–(22):

|e(ρ)(t)| ≤ Kp [κ1(|x̂|+ δ0) + κ2 + k%%(t)] + |y(ρ)
m (t)| , (30)

modulo exponential decaying terms due to initial conditions, which take into account the

transient of the FOAF. By defining known positive constants k1, k2, k3 and km satisfying

km ≥ |y(ρ)
m (t)|, k1 ≥ Kpκ1, k2 ≥ Kp(κ1δ0 + κ2) + km and k3 ≥ Kpk%, we can define

L(x̂, t) := k1|x̂|+ k2 + k3%(t) , (31)

and state the following upper bound constructed only with measurable signals

|e(ρ)(t)| ≤ L(x̂, t) , ∀t ≥ T , (32)

for some finite time T > 0.

In light of (31)–(32), we can introduce the following HOSM differentiator based

on dynamic gains for the output error e ∈ R, with state ζ = [ζ0 . . . ζρ−1]T and order
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p = ρ− 1: ζ̇0 =v0 = −λ0L(x̂, t)
1
p+1 |ζ0 − e(t)|

p
p+1 sgn(ζ0 − e(t)) + ζ1,

...

ζ̇i=vi=−λiL(x̂, t)
1

p−i+1 |ζi−vi−1|
p−i
p−i+1 sgn(ζi−vi−1)+ζi+1,

...

ζ̇p=−λpL(x̂, t)sgn(ζp − vp−1) .

(33)

The dynamic gain of our differentiator must satisfy the same conditions for finite-

convergence given in [11]: the global upper bound L(x̂, t) must be absolutely continuous

with bounded logaritmic derivative (|L̇/L| ≤ M , where M > 0 is some constant). It

implies that L(x̂, t) can grow at most exponentially as a result of |L̇| ≤ M |L|. Similar

results can be obtained for non-homogeneous versions (with additional linear terms) of

variable gains HOSM differentiators [83]. Our main advantage is that the differentiator

gain is constructed using only input-output information, while the full-state measurement

is assumed in [11].

According to the linear growth condition assumed in (A4) for the system nonline-

arities and the regularity condition [57] assumed in (29) for the control signal, any finite-

escape is precluded and only exponentially growing signals are possible in the closed-loop

system, as it will be show in the proof of the main theorem. Thus, if the parameters λi

are properly recursively chosen [17], the following equalities

ζ0 = e(t) , ζi = e(i)(t) , i = 1 , . . . , p , (34)

are established in finite time [17], but with the theoretical advantage of being globally

valid (for any initial conditions) since it is not required a priori that the signal e(ρ)(t) be

uniformly bounded, as assumed in the HOSM differentiator with fixed gains [17].

Remark 2 (Impacts of the Measurement Noise). The inclusion of measurement noise and

its impact on HOSM based differentiators (with constant or variable gains) was already

discussed in the literature [11,17]. Since our global HOSM differentiator follows the same

philosophy, the existing uniformly ultimate boundedness (UUB) results are at least expec-

ted to be preserved. Due to space limitations, we could not add such existing knowledge

here. However, the robustness of the overall control scheme to measurement noise will be

illustrated in our numerical results. As a further remark, if L(x, t) eventually decreases,

L(x̂, t) vanishes too. Consequently, less sensitivity to measurement noise, discretization



32

and delays can be expected rather than the differentiator with necessarily high-constant

gains used to prove semi-global stability. Thus, the globality is attained with advances in

practical scenarios as well. y

1.4 Global Tracking via Output-feedback

The next step is to proposed output-feedback control laws which satisfy (29) such

that the global differentiator above can be indeed constructed and applied.

1.4.1 First Order SMC for Arbitrary Relative Degrees

The main idea of sliding mode control is to design the relative degree one sliding

variable such that, when the motion is restricted to the manifold σ = 0, the reduced-order

model has the required performance.

For higher relative degree plants, one could use the operator Lm(s) defined in (3),

to overcome the relative degree obstacle. The operator Lm(s) is such that Lm(s)G(s) and

Lm(s)Wm(s) have relative degree one. The ideal sliding variable σ=Lm(s)e ∈ R is given

by

σ = e(ρ−1) + · · ·+ l1ė+ l0e (35)

=

ρ−1∑
i=0

liH0A
i
cXe = H̄Xe ,

where the second equality is derived from Assumption (A3) and (19). Notice that

{Ac, Bc, H̄} is a nonminimal realization of Lm(s)Wm(s). From (2)–(3), one has

σ = Lm(s)Wm(s)Kp

[
u− θ∗Tω + df

]
=

Kp

s+ γm

[
u− θ∗Tω + df

]
. (36)

If the first order SMC law was given by u = −%(t)sgn(σ), with modulation function

%(t)≥0 satisfying

%(t) ≥ | − θ∗Tω(t) + df (t)|+ δ , δ > 0 , (37)

where the constant δ can be arbitrarily small, then the closed-loop error system (19)

would be uniformly globally exponentially stable and the ideal sliding variable σ became
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identically zero after some finite time, according to [84, Lemma 1]. Since Ap, Bp and

Hp in (1) belong to some known compact set, an upper bound θ̄ ≥ |θ∗| can be obtained.

Thus, a possible choice for the modulation function to satisfy (37) is given by

%(t) = θ̄|ω(t)|+ d̂f (t) + δ , (38)

with d̂f (t) defined in (23). However, σ is not directly available to implement the control

law. Thus, using the proposed global HOSM differentiator, the following estimate for σ

can be obtained:

σ̂ = ζρ−1 + · · ·+ l1ζ1 + l0ζ0 . (39)

From (10), (22) and (23), it is easy to show that the following control signal

u = −%(t)sgn(σ̂) , (40)

with the modulation function %(t) in (38), satisfies inequality (29) for k% = 1. To show

this property we just have to write |ω| ≤ κ5|X| + κ6 from (10), with κ5 , κ6 > 0 and

considering that r(t) is an uniformly bounded reference signal. Then, from the ISS relation

of the filtered signals in (22) and (23) with respect to ω, we conclude the norm bounds

|d̂f | ≤ κa||Xt|| + κb and |x̂| ≤ κc||Xt|| + κd, for appropriate constants κa , κb , κc , κd > 0.

Thus, the global differentiator with dynamic gains given in (33) can indeed be constructed

and its state exactly surrogates the time derivatives of the signal e(t) in the sliding variable

σ̂ (39), after some finite time.

1.4.2 Stability Analysis

The next theorem states the global stability results with ultimate exact tracking

for the output-feedback scheme.

Theorem 1. Consider the plant (1) and the reference model (2)–(3). The output-feedback

control law u is given by (40) with modulation function % defined in (38) satisfying (37) and

the global exact estimate σ̂ given by (39) and constructed with the state ζ = [ζ0 . . . ζρ−1]T

of the proposed differentiator (33). Suppose that assumptions (A1) to (A4) hold. For

λi , i = 0, . . . , ρ−1, properly chosen and L(x̂, t) in (33) satisfying (31), the estimation of

the ideal sliding variable σ becomes exact after some finite time, i.e., σ̂ ≡ σ. Then, the
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closed-loop error system with dynamics (19) is uniformly globally exponentially stable in

the sense that Xe and, hence, the output tracking error e converge exponentially to zero

and all closed-loop signals remain uniformly bounded.

Proof 1. In what follows, ki > 0 are constants not depending on the initial conditions.

The demonstration is divided in two steps. In the first one, it is necessary to show that

no finite time escape in the closed-loop system signals is possible. By using the relations

(10) and (18), one has that X = Xe +Xm and the regressor vector

ω = Ω1Xe + Ω1Xm + Ω2r . (41)

Let xm := [ym ẏm . . . y
(ρ−1)
m ]T and xe := ξ − xm, with ξ in (25). From (19), it can be

shown that e(i) = H0A
iXe, for i = 0, . . . , ρ− 1, hence |xe| ≤ k0|Xe|. Therefore, since xm

is uniformly bounded, then ξ = xe+xm can be affinely norm bounded in |Xe|. In addition,

from (24), the η-dynamics is ISS with respect to y = Cρξ. Thus, one can conclude that

|x| ≤ k1‖ξt‖ + k2, and consequently, |x| ≤ k3‖(Xe)t‖ + k4. Due to assumption (A4)

concerning the linear growth condition of the nonlinear disturbances with respect to the

unmeasured state x, from (12) and (15), one has

|Xm| ≤ k5‖(Xe)t‖+ k6 . (42)

Finally, from (10), (41) and (42), we conclude ω, the term df in (19), and consequently

the control input u with modulation function % in (38) are all affinely norm bounded by

X or Xe, i.e.,

|u| , |df | , |ω| ≤ ka‖Xt‖+ kb , (43)

|u| , |df | , |ω| ≤ kc‖(Xe)t‖+ kd . (44)

Thus, the system signals will be regular and, therefore, can grow at most exponentially [57].

This fact lead us to the second step of the proof. There exist two finite-time instants T1 > 0

and T2 > 0 such that (32) and (37) are satisfied, ∀t > max{T1,T2}. Then, the ideal

sliding variable is exactly estimated, i.e., σ̂ ≡ σ and the relative degree compensation is

perfectly achieved. Moreover, from [84, Lemma 1], the ideal sliding mode σ̂(t) ≡ σ(t) ≡ 0

is achieved in finite time. Since σ in (35) is the relative degree one output for (19), it is
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possible to rewrite it into the normal form [80] such that the states of the error system

are input-to-state stable (ISS) with respect to σ, for a particular exponential class-KL
function. It can be shown reminding that Lm(s)Wm(s) = 1/(s+γm). From (19) and (36),

one gets Ẋe = AcXe +Bc(σ̇ + γmσ). Further, using the transformation Xe := X̄e +Bcσ,

one has

˙̄Xe = Ac X̄e + (AcBc + γmBc)σ , (45)

which clearly implies an ISS relationship from σ to either Xe or X̄e since Ac is Hurwitz.

Thus, Xe and e = H0Xe tends exponentially to zero as well as the state ζ of the differen-

tiator, which is also driven by e. From (44), we conclude that all remaining signals are

uniformly bounded. �

1.5 Application Example

The dynamic system used in this section is a perturbed version of a linearized model

describing the vertical-plane motion used in [11]. The original system is perturbed with

nonlinear terms d(x, t) and φ(t) as in (1). This model for linear aircraft pitch-control

loop will be made globally stable via the method proposed in the present chapter. In this

sense, the terms in (1) are defined as follows:

Ap =



−0.0121 0.0523 −0.0001 −31.9173 −54.213

−0.0722 −0.7041 0.001 −4.0242 433.03

−0.12 −0.9923 0 437.387 0

0 0 0 0 1

0.0062 −0.0390 0 −0.00001 −0.596


,

Bp =
[
−2.062 46.2402 0 0 23.275

]T
, Hp =

[
0 0 0 1 0

]
. The system is per-

turbed by d(x, t) = kxx3(t) cos(x1(t) + x2(t)) and φ(t) =
[
0 0 1 0 1

]T
(0.6 sin(3t) +

0.4 sin(0.8t)). The states x1, x2 are the velocity components, x3 is the altitude, y = x4 is

the pitch angle (the only available output of relative degree ρ = 2) and x5 = ẋ4.

The control goal is the tracking of ym = 0.5
(s+1)(s+0.5)

r with r(t) being a bounded

piecewise-continuous signal defined as r = sin(t) [rad] for t ∈ [0, 12] [sec], r = −0.4 [rad] for

t ∈ (12, 20] [sec] and r = 0 [rad] for t ∈ (20, 40] [sec]. The ideal sliding variable σ = ė+ l0e,

with e = y − ym and l0 = 7, will be estimated using the robust global differentiator (33)
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with p = 1, according to σ̂ defined in (39). Such differentiator requires the upper bound for

ë. We have that ÿ = ẋ5 = ax+Kp[u+ d(x, t)] +HpApφ(t), where a = HpA
2
p = [a1, . . . , a5]

is the fifth row of Ap and Kp = HpApBp = 23.275. Note that |a5| = max |ai| and

d(x, t) ≤ kx|x| (kx = 0.001 for the simulations), then we may choose k1 in Eq.(31)

as k1 ≥ 4|a5| + |kx|, since a3 = 0. However, by using the knowledge that the order of

magnitude for the aircraft altitude variable is at least 100 times larger than the magnitude

of the pitch angle derivatives, we propose the use of k1 ≥ |a1|+ |a2|+ |a4|+ |a5|/50+kx to

obtain less conservative upper bounds when q is replaced by the full-state norm observer

x̂. Recalling that |ÿm| ≤ km and |HpApφ(t)| ≤ 1, one get the next missing parameters for

Eq.(31): k2 ≥ 2 and k3 ≥ 23.275. Finally, one gets L(x̂, t) = 0.1|x̂| + 25%(t) + 2, which

was used in our simulations. For the controller u = −%(t)sgn(σ̂) in (40), the modulation

function (38) was applied as %(t) = 4|ω| + d̂f (t) + 0.2, with d̂f (t) = 1.6
s+0.5

(0.001|x̂|+6),

k̄φ = kd = 0 in (23) and |x̂(t)|= 1
s+0.18

(180+720|ω|) in (22). The regressor vector ω is

constructed using the I/O filters given in (6) with Φ =

 0 I

−11 −44.75 − 79.75 − 52.5


and Γ =

[
0 0 0 1

]T
.

Figure 1 and Figure 2 depict the results obtained in the numerical tests with

the same plant initial conditions used in [11], while the remaining initial values for the

filters and the differentiator used to compute the control signal were set to zero. The

measurement of the output y is contaminated by a zero-mean uniform noise with an

amplitude of 0.02 [rad], the same level of noise used in [11]. As expected, after some finite

time: (a) |x̂(t)| ≥ |x(t)|; (b) L(x̂, t) ≥ L(x, t) ≥ |ë(t)|; (c) the global HOSM differentiator

converges but the dynamic gain L(x̂, t) is still large; (d) the controller with time-varying

modulation function %(t) ensures the trajectory tracking; (e) the control signal u(t) starts

to converge with the state variables and the chattering intensity is reduced; (f) the bound

L(x̂, t) also decreases and the tracking precision grows, despite of the noisy scenario and

the presence of nonlinear matched/unmatched perturbations.

In contrast to the design in [11], only I/O information is required to obtain the

global controller. There, the other state variables were assumed to compute the time-

varying gain of the differentiator applied to a continuous and local HOSM based controller.

In our approach, the gains for the differentiator and controller are globally adapted so that

chattering reduction is always allowed.
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2 FIRST ORDER SLIDING MODE CONTROL WITH MONITORING

FUNCTION

An algorithm for adaptation of the gains of higher-order sliding mode (HOSM)

based exact differentiators is developed for the case where the upper bound for the ρth

derivative of the tracking error signal exists but it is unknown. Unlikely other publications

in the literature, the developed adaptive algorithm based on monitoring functions guaran-

tees global and exact tracking when used in closed-loop output feedback. In the closed-loop

scenario, a global-exact and finite-time estimate for the variables ė(t) , ë(t) , . . . , e(ρ−1)(t)

is applied to construct the sliding surface of the proposed sliding mode controller. The

class of uncertain systems of arbitrary relative degree (ρ ≥ 1) takes into account time-

varying perturbations with unknown bounds and state-dependent nonlinearities satisfying

a linear growth condition with any unknown rate. The norm of the unmeasured state is

majorized by using a hybrid norm-state estimator. Numerical examples and an engine-

ering application to wing rock control are presented in order to illustrate the properties

and advantages of the novel adaptation approach for sliding mode control design.

2.1 Problem Statement

Consider the class of uncertain systems

ẋ = Apx+Bp[u+ d(x, t)] , y = Hpx . (46)

where u ∈ R is the input, y ∈ R is the measured output, d(x, t) ∈ R is a state depen-

dent and time-varying nonlinear disturbance. The vector x = [y ẏ . . . y(n−1)]T is the

unmeasured state. The triple (Ap, Bp, Hp) is in the Brunovsky’s like-controller form [80]:

Ap =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

0 0 0 . . . 0


, Bp =



0

0
...

0

Kp


, Hp =

[
1 0 . . . 0 0

]
, (47)
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where the high frequency gain (HFG) Kp ∈ R as well as its sign, or also named control

direction [29], are assumed to be unknown and the arbitrary relative degree is denoted

by ρ. For the sake of simplicity, the zero dynamics [80] of the plant in (46) was dropped

so that ρ = n.

We further assume that:

(A1) The uncertain input disturbance d(x, t) is norm bounded by

|d(x, t)| ≤ kx|x|+ kd , ∀x, t ,

where kx, kd ≥ 0 are unknown scalars.

Although this assumption restricts the class of disturbances to linear growing with

respect to the unmeasured state, the problem remains quite challenging since unknown

and arbitrary growth rate are considered. Simultaneously, global stability properties and

perfect-exact tracking using output feedback are pursued.

We consider the following model for the reference signal ym(t) ∈ R:

ym = Wm(s) r , Wm(s)=(s+γm)−1L−1
m (s) , γm>0, (48)

where r(t) ∈ R is an arbitrary uniformly bounded piecewise continuous reference signal

and Lm(s) is a Hurwitz polynomial defined as follows

Lm(s)=s(ρ−1) + lρ−2s
(ρ−2) + · · ·+ l1s+ l0. (49)

The transfer function matrix Wm(s) has the same relative degree ρ, as well as the plant,

and its HFG is the unity.

The objective is to find u such that for arbitrary initial conditions, the output error

e(t) := y(t)− ym(t) (50)

tends to zero.

For d ≡ 0 and known plant, the ideal control signal u∗ = θ∗
T
ω, with θ∗ =[

θ∗
T

1 θ∗
T

2 θ∗3 θ
∗
4

]T
, θ∗1, θ

∗
2 ∈ R(n−1), θ∗3, θ

∗
4 ∈ R, achieves the matching between the closed-
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loop transfer function matrix and Wm(s), using the following regressor vector

ω = [ωTu ωTy y r]T , (51)

with wu, wy ∈ R(n−1) obtained from I/O state variable filters given by:

ω̇u = Φωu + Γu , ω̇y = Φωy + Γy , (52)

where Φ ∈ R(n−1)×(n−1) is Hurwitz and Γ ∈ R(n−1) is chosen such that the pair (Φ, Γ)

is controllable. The matching conditions require that θ∗4 = K−1
p . Define the augmented

state vector

X=[xT , ωTu , ω
T
y ]T , (53)

with dynamics described by Ẋ = A0X + B0u + B′0d , y = HoX. Then, by adding and

subtracting B0θ
∗Tω and noting that there exist matrices Ω1 and Ω2 such that

ω=Ω1X+Ω2r , (54)

one has

Ẋ=AcX +BcKp[θ
∗
4r + u− u∗] +B′0d , y=HoX , (55)

where Ac = A0 +B0θ
∗TΩ1, and Bc = B0θ

∗
4. We have that (Ac, Bc, Ho) is a nonminimal

realization of Wm(s). The reference model can be rewritten as

Ẋm=AcXm +BcKp[θ
∗
4r − df ] +B′0d , ym=HoXm , (56)

with the following filtered input disturbance

df = Wd(s)d , (57)

where

Wd(s) = [Wm(s)Kp]
−1 W̄d(s) , (58)

W̄d(s) = Ho (sI − Ac)−1B′0 . (59)
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Therefore, ym = Wm(s)Kp

[
θ∗T4 r −Wd(s)d

]
+W̄d(s)d and it is straightforward to conclude

that ym = Wm(s) r. Note that (58) is a stable and proper transfer function. In addition,

[Wm(s)Kp]
−1 =K̄ρs

ρ+K̄ρ−1s
ρ−1+. . .+K̄0, where K̄i∈R, i=0, . . . , ρ are constants. Thus,

by defining the error state

Xe := X −Xm (60)

the complete error dynamics can be obtained by subtracting (56) from (55), which leads

to

State Space: Ẋe = AcXe +BcKp[u− θ∗
T

ω + df ] , (61)

e = Ho Xe,

I/O Form: e = Wm(s)Kp

[
u− θ∗Tω + df

]
. (62)

2.2 Switching Monitoring Function

In Section 2.5, it is described in details the proposed adaptive output-feedback

SMC law which satisfies the control objectives. For the time being, we identify possible

showstoppers in the design of an adequate control gain %(t) to dominate the unknown

disturbance df (x, t) in (61)–(62) and the appropriate sliding variable σ(t) to guarantee

the sliding mode existence for the disturbed system (46) with arbitrary relative degrees.

If sgn(Kp) was known, the first-order SMC law could be defined by

u = −sgn(Kp)%(t)sgn(σ) , σ = Lm(s)e , (63)

Lm(s) is given in (49). According to (62), the control gain or modulation function %(t) is

designed to overcome the ideal matching control u∗ := −θ∗Tω + df , which is regarded as

an input disturbance in (61). According to [84, Lemma 1], if we choose %(t) satisfying the

inequality %(t) ≥ |u∗(t)|, one can conclude the σ-dynamics governed by

σ̇(t) = −γmσ(t) +Kp[u+ u∗(t)] + π(t) , (64)

is at least exponentially stable, where π(t) denotes a transient term due to initial con-

ditions of the observable but not controllable subsystem of the nonminimal realization

(Ac, Bc, H
T
o ) of Wm(s) in (61)–(62).
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Since σ is the relative degree one output of the error system (61), it is possible to

rewrite it into the normal form [80] such that the states of the error system are input-to-

state stable (ISS) with respect to σ, for a particular exponential class-KL function. Thus,

Xe and e = HoXe tend exponentially to zero satisfying

|e(t)| ≤ e−γm(t−t̄0)|e(t̄0)|+ c0e
−λ0t , ∀t ≥ [t̄0,+∞) , (65)

where t̄0 denotes some initial time, and |π(t)| ≤ c0e
−λ0t, for c0 being an unknown positive

constant depending on the initial conditions of the state variables and λ0 > 0 being an

unknown constant satisfying 0 < λ0 < min{−Re(λi[Ac])}, with λi[Ac] being the spectrum

of Ac referred above [16, pp. 346].

The monitoring function is a hybrid operator which was first presented in [85]. The

main idea is to construct a monitoring function to supervise the behavior of the tracking

error and then, a switching scheme. As result, in closed-loop, after a finite number of

switchings, the tracking error converges to zero at least exponentially [85]. Based on

inequality (65), consider the auxiliary function ϕk defined as follows [29]:

ϕk(t) = e−γm(t−tk)|e(tk)|+ a(k)e−
t

a(k)+1 , (66)

t ∈ [tk,∞) , t0 = 0 , k ∈ N ,

where a(k) is any positive monotonically increasing unbounded sequence.

The monitoring function ϕm can be defined as [29]:

ϕm(t) := ϕk(t) , ∀t ∈ [tk, tk+1) (⊂ [0,+∞)) . (67)

It is worth mention that the monitoring function (66) and (67) does not use the knowledge

of the sign of Kp. Notice that equation (63) is presented previously just to guide us in the

design of ϕm so that we can obtain a valid norm bound for the tracking error e(t) when

the control direction and %(t) are correct and, then, construct a monitoring signal which

is always an upper bound for e(t) and the latter eventually decreases with it.

Basically, the motivation behind the introduction of ϕm is that π in (64) is not

available for measurement. Reminding that the inequality (65) holds if the inequality

%(t) ≥ |u∗| is satisfied, it seems natural to use the right-hand side of (65) as a benchmark
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to detect if the sliding mode is being lost and the error is increasing so that k must be

increased too. Since π is not available, one has (67) to invoke the switching of ϕm. Note

that from (67), one always has |e(tk)| < ϕk(tk) at t = tk. Hence, the switching time tk is

well-defined (for k ≥ 0):

tk+1 =

min{t > tk : |e(t)| = ϕk(t)}, if it exists ,

+∞, otherwise .

(68)

From this point of view, the monitoring function (66)–(67) is a hybrid operator [30], where

the jump variable is the state of the monitoring function at the switching time tk, the

condition (68) defines the rule or guard of switching. The exponential behavior after the

occurrence of a jump (that can be described by a differential equation) is referred to as

flow. Figure 3 illustrates the tracking error norm |e| and the monitoring function ϕm.

Flow

ϕ0

J
u
m
p

Flow

ϕ1

J
u
m
p

Flow

ϕ2

|e|

t0 t1 t2

t

Figure 3 – The trajectories of ϕm (dashed line) and |e(t)| (solid line). The monitoring
function is a hybrid operator which jumps and flows.

Table 1 shows the pseudocode to get the main “global”switching variables k, tk,

|e(tk)| used in the computation of the monitoring function (66)–(67), being updated ac-

cording to the switching rule (68). The control direction estimate (feedback sign) can
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also be obtained simply by initializing such variable randomly with +1 or −1. After the

switching process of the monitoring function ϕm stops the control direction is correctly

estimated.

Table 1 – Pseudocode of the switching algorithm implemented on MATLAB (Mathworks,
USA).

function [output] = switchingAlgorithm (input)

global k % switching index
global tk % switching time
global moduloError % |e(tk)|
global controlDirection % control direction

error = input(1); % current value of error norm, |e(t)|
phi = input(2); % current value of monitoring function, ϕm(t)
time = input(3); % current value of time, t

if (phi < error)
tk = time;
k = k+1;
controlDirection = -controlDirection;
moduloError =1*erro;
output=[tk; k; controlDirection; moduloError];

end

output=[tk; k; controlDirection; moduloError];

2.3 Hybrid State-Norm Observer

The importance of the calculations in Section 2.1 using the augmented state X, re-

lies not only in deriving the full-error equation (61), but it yields also an output-feedback

framework in which a norm bound for the unmeasured state can be obtained, as discussed

in what follows. The main novelty is the introduction of a hybrid state-norm estimation

scheme which flows through a continuous state space but also moves through different dis-

crete switching modes, as defined in [30], according to the monitoring function introduced

Section 2.2.
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2.3.1 Known growth rate kx and upper bound kd

If kx and kd in assumption (A1) were assumed known as in previous publications

[54, 55], by applying [8, Lemma 3] to (55), it would be possible to find k∗x > 0 such that,

for kx ∈ [0, k∗x] a norm bound for X and x can be obtained through stable first order

approximation filters (FOAFs). Thus, one could write

|x(t)| , |X(t)| ≤ |x̂(t)|+ π̂(t) , (69)

x̂(t) :=
1

s+ λx
[c1kd + c2|ω(t)|] , (70)

where c1, c2, λx > 0 are appropriate constants that can be computed by the optimization

methods described in [56]. In this sense, (69)–(70) state that the norm observer estimate

x̂(t) provides a valid norm bound for the unmeasured state x of the uncertain and distur-

bed plant, i.e., |x| ≤ |x̂| except for exponentially decaying terms due to the system initial

conditions, denoted here by π̂(t).

Note that the parameter λx in (70) is defined by λx := γ0−|B′0|kx, where |B′0|kx > 0

is a constant smaller than γ0 computed with B′0 given in (55), and γ0 > 0 being the

stability margin1 of Ac in (55). Since the eigenvalues of Ac are the poles of the I/O filters

(52) and the reference model (48), hence it is possible to consider an arbitrary scalar kx

by decreasing the time-constant of such filters. However, it would be necessary to know

the exact value of kx to choose the eigenvalues of Φ in (52) as well as γm and the roots of

Lm(s) in (48) to satisfy the condition λx > 0.

2.3.2 Unknown growth rate kx and upper bound kd

Now, we relax the restriction about the knowledge of the growth constant kx and

upper bound kd by proposing a novel hybrid state-norm observer in the sense of [30]:

˙̂x(t) = −λx(k)x̂(t) + k̄ω(k)[1 + |ω(t)|] , (71)

where λx(k) is any positive monotonically decreasing sequence of the switching index k

being lower bounded away from zero (i.e., λx(+∞) 6= 0) and k̄ω(k) is a positive mono-

tonically increasing unbounded sequence. By applying the Comparison Theorem [81] to

1Let {λi} be the eigenvalues of Ac, the stability margin of Ac is defined by γ0 := mini[−Re(λi)].
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(55) and (71), one obtain

|x(t)| , |X(t)| ≤ |x̂(t)|+ δ0 , ∀t ≥ T0 , (72)

with δ0 > 0 being any arbitrary constant. Unlikely (69), inequality (72) guarantees a

valid norm bound for the unmeasure state after some finite time T0 > 0.

From (57), we can write |df | ≤ |Wd(s)d|. Moreover, from (A1) and (70), one

has |d(x, t)| ≤ kxx̂(t) + kd, modulo π̂ term. Analogously to (72), at least one can write

|df | ≤ d̂f + π̂f , where π̂f is an exponentially decaying term, and

d̂f (k, t) :=
cf

s+ λf
[k̄x(k)x̂(t) + k̄d(k)] , (73)

where
cf

s+λf
is a FOAF designed for Wd(s), with adequate positive constants cf and λf .

At the price of some conservatism, we can simplify the FOAF design by choosing cf

sufficiently large and λf sufficiently small since the latter must satisfy λf < γ0, where γ0

is the known stability margin of Ac, and any uncertainty involving the computation of cf

could be encompassed in the switching terms k̄x(k) and k̄d(k). The unbounded increasing

switching sequences k̄x(k) and k̄d(k) must (at least) ultimately satisfy k̄x(k
∗) > kx and

k̄d(k
∗) > kd, for some finite value k∗ < +∞, so that our hybrid system has an eventually

continuous solution on the hybrid time domains [30] satisfying |df (t)| ≤ d̂f (k
∗, t), after

some finite time.

2.4 Global Adaptive HOSM Differentiator

The norm state estimation obtained with (69)–(70) was applied in [54] for the

construction of a time-varying gain HOSM differentiator achieving exact differentiation

of signals with any initial conditions. Here, we generalize the HOSM differentiator by

adjusting adaptively the unknown gains of the differentiator through the hybrid norm-

state estimation based on monitoring function introduced in Section 2.3.2.

From (46)–(47), assumption (A1) and using the augmented state X defined in (53),

the following norm bound for y(ρ) is obtained

|y(ρ)| ≤ L(X, t) = k1|X|+ k2 + k3|u| , (74)
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where k1 ≥ |Kp|kx, k2 ≥ |Kp|kd and k3 ≥ |Kp| are unknown positive constants.

Now, from (74) and (50), we can write

|e(ρ)(t)| ≤ L(X, t) + |y(ρ)
m (t)| . (75)

The following upper bound involving the norm observer variable x̂(t), can be obtained

using (69):

|e(ρ)(t)| ≤ L(x̂, t) + |y(ρ)
m (t)| , (76)

= k1|x̂|+ k2 + k3|u|+ km, (77)

modulo exponential decaying terms due to initial conditions which take into account the

transient of the FOAF. The known positive constant km satisfies |y(ρ)
m (t)| ≤ km.

Our output-feedback generalization for SMC satisfies |u| ≤ %(t), where %(t) is an

absolutely continuous modulation function (to be defined later on) constructed with the

signal x̂ in (71)–(72). Thus, we can define the term

L(x̂, k, t) := k̄1(k)|x̂|+ k̄2(k) + k̄3(k)%(t) + km , (78)

with k̄j(k), ∀j = 1 , 2 , 3, being monotonically increasing unbounded sequences of the

switching index k such that k̄1(k∗) > k1, k̄2(k∗) > k2, k̄3(k∗) > k3, for some finite value

k∗ < +∞. Then, we can write the following norm bound

|e(ρ)(t)| ≤ L(x̂, k, t) , ∀t ≥ T , (79)

for some finite time T > 0.

In light of (78)–(79), we can introduce the following HOSM based differentiator of
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order p = ρ− 1 for the output error e ∈ R:

ζ̇0 =v0 = −λ0L(x̂, k, t)
1
p+1 |ζ0 − e(t)|

p
p+1 sgn(ζ0 − e(t)) + ζ1,

...

ζ̇i=vi=−λiL(x̂, k, t)
1

p−i+1 |ζi−vi−1|
p−i
p−i+1 sgn(ζi−vi−1)+ζi+1,

...

ζ̇p=−λpL(x̂, k, t)sgn(ζp − vp−1) .

(80)

Sufficient conditions for global finite-convergence of HOSM differentiators with

variable gains were already given in [50]. Basically, the variable gain, denoted there by

L(t), may have an arbitrary growth so that L̇(t) ≥ 0 implies into faster convergence

rates for the differentiator error. The faster is the growth of L(t), the faster is the finite-

time convergence of the differentiator error to zero. On the other hand, for the case

L̇(t) < 0, the differentiator gain L(t) decreases, and at least local finite-time stability

of the origin for arbitrary time-varying gains can be assured. If |L̇/L| is bounded, then

the differentiator gain can grow in the worst case exponentially, and finite-escape time is

not possible. The latter condition is the same introduced by [11], which results in locally

convergence properties for homogeneous HOSM differentiators, but which is valid globally

for non-homogeneous differentiators, as discussed in [28].

Since our differentiator gain L(x̂, k, t) is constructed based on an upper bound x̂

for the state vector x(t) and the switching index k, hence L(x̂, k, t) is always increasing

when the plant state vector (and indirectly the differentiator error, which is driven by

the tracking error e(t)) are not converging. Consequently, the differentiator errors are

forced to ultimately achieve a compact set on which the local results for time-varying

gains by [11] can be invoked when we use homogeneous HOSM differentiators such as

(80). Thus, global convergence can be concluded. The convergence of the differentiator

(80) is global since the upper estimation (79) holds independent of any initial condition of

the closed-loop signals (the state trajectory must not be restricted a priori to any compact

set |e(ρ)(t)| ≤ DR, for some constant DR > 0 sufficiently large).

The dynamic gain of our differentiator is the global upper bound L(x̂, k, t) in (79)

generated by continuous signals almost everywhere which can grow at most exponentially

(there is no escape in finite time) due to the linear growth condition (A1). Thus, the

logarithmic derivative L̇/L is bounded, except for a set of zero Lebesgue measure due to



49

the switching terms, and the following equalities

ζ0 = e(t) , ζi = e(i)(t) , i = 1 , . . . , ρ− 1 , (81)

can be established in finite time according to [11, 28], provided the parameters λi are

properly chosen. The boundedness of all closed-loop signals is presented in the proof of

the main theorem.

Our main contribution is to show how to construct the differentiator gain for time-

varying and state dependent terms in the signal |e(ρ)| using only input-output information

in order to satisfy the conditions raised in [11,50].

2.5 Output-Feedback Sliding Mode Control

The next step is to show in details the modulation function and sliding variable

designs of the proposed first order output-feedback SMC law such that the adaptive

HOSM differentiator above can be indeed constructed and applied. Then, the proof of

convergence for the tracking error e(t) with our output-feedback controller based on the

estimate state of the HOSM differentiator is straightforward once the convergence of the

differentiator (80) is already guaranteed and the separation principle is always fulfilled [11].

The proposed output-feedback SMC law can be written as

u = (−1)k+m%(t)sgn(σ̂) , (82)

where k ∈ {0 , 1 , . . .} is the switching index generated by the monitoring function swit-

ching and m ∈ {0 , 1}. Hence, depending on the choice of m (0 or 1), we can set the initial

value for the estimate of the unknown control direction (−1)k+m. The computation of

%(t) and σ̂ is presented in the next section.

The monitoring function (66) and (67) help us in detecting when a switching of

the control gain %(t) as well as in the control direction is necessary. Inappropriate %(t)

and the wrong control direction can cause a switching, and every time one of these two

are violated, the monitoring function acts by increasing the switching index k in (82), so

that our control objectives can be ultimately achieved.
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2.5.1 Modulation function or control gain

As discussed at the beginning of Section 2.2, the modulation function or control

gain %(t)≥ 0 must dominate the equivalent input disturbance u∗(t) := −θ∗Tω(t) + df (t)

in (61) so that:

%(t) ≥ | − θ∗Tω(t) + df (t)|+ δ , δ > 0 , (83)

where the constant δ can be arbitrarily small. Regarding Ap, Bp and Hp in (46), since

more precisely Kp in (47) belongs to some unknown compact set, an unknown upper

bound Θ ≥ |θ∗| can be written, with θ∗ being the ideal parameter vector for matching

control given before equation (51). Thus, a possible choice for the modulation function

to satisfy (83), at least after some finite time, is given by

%(t) = θ̄(k)|ω(t)|+ d̂f (k, t) + δ , (84)

with d̂f (k, t) defined in (73) and θ̄(k) being any monotonically increasing unbounded

sequence of the switching index k such that θ̄(k∗) > Θ, for some finite value k∗ < +∞.

Of course, there is not an unique choice for %(t) due to the countless possibilities

for the monotonically increasing sequences θ̄(k). Basically, every modulation function

%(t) which ultimately satisfies (83) serves as an appropriate selection. If more aggressive

sequences in terms of growth with the switching index k are employed, less switchings may

occur. However, the price to be paid is the obtainment of more conservative modulation

functions %(t) in terms of larger control amplitudes. Thus, there is a trade-off between

the choice of the switching sequences and its impact in the control signal.

The following condition

%(t) ≤ κa||Xt||+ κb , κa > 0 , κb > 0 , (85)

must be satisfied by %(t) to avoid finite-time scape in the closed-loop signals used to

compute the variable gain (78) so that (81) can be verified for the adaptive differentiator

(80). To show the modulation function %(t) in (84) indeed satisfies inequality (85), we

just have to write |ω| ≤ κc|X|+κd from (54), with κc , κd > 0 and considering that r(t) is

an uniformly bounded reference signal. Then, from the ISS relation of the filtered signals

in (71) and (73) with respect to ω, we conclude the norm bounds |d̂f | ≤ κe||Xt|| + κf
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and |x̂| ≤ κg||Xt||+ κh, for appropriate constants κe , κf , κg , κh > 0. Now, from (84), we

conclude (85).

2.5.2 Sliding variable

The main idea of the sliding surface design is to obtain the relative degree one

sliding variable such that, when the motion is restricted to the manifold σ = 0, the

reduced-order model has the required performance.

For higher relative degree plants, one could use simply the operator Lm(s) de-

fined in (49), to overcome the relative degree obstacle. The operator Lm(s) is such

that Lm(s)G(s) and Lm(s)Wm(s) have relative degree one. The ideal sliding variable

σ=Lm(s)e ∈ R is given by

σ = e(ρ−1) + · · ·+ l1ė+ l0e . (86)

More general (nonlinear) combinations of the variables e(ρ−1) , . . . , ė and e, rather

than the simple linear combination given in (86) could be envisaged. As an advantage,

finite-time convergence for the tracking error e(t) would be guaranteed instead of expo-

nential convergence only.

Anyway, σ is not directly available to implement the control law. Thus, reminding

(81) and using the proposed adaptive HOSM differentiator, the following estimate for σ

can be obtained to replace (86):

σ̂ = ζρ−1 + · · ·+ l1ζ1 + l0ζ0 . (87)

Table 2 presents the complete equations for the proposed control scheme.
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Table 2 – Complete equations for the control system.

Plant
ẋ = Apx+Bp[u+ d(x, t)]
y = Hpx

Model Reference
ym = Wm(s)r
Wm(s) = (s+ γm)−1L−1

m (s), γm > 0
Lm(s) = s(ρ−1) + lρ−2s

(ρ−2) + · · ·+ l1s+ l0

Error e = y − ym

Regressor Vector
ω = [ωTu ωTy y r]T

ω̇u = Φωu + Γu
ω̇y = Φωy + Γy

Switching Monitoring Function

ϕm(t) := ϕm(t) = e−γm(t−tk)|e(tk)|+ a(k)e−
t

a(k)+1

∀t ∈ [tk, tk+1) (⊂ [0,+∞)) , k ∈ N

tk+1 =

{
min{t > tk : |e(t)| = ϕk(t)}, if it exists,

+∞, otherwise.

Hybrid State-Norm Observer
˙̂x(t) = −λx(k)x̂(t) + k̄ω(k)[1 + |ω(t)|]
d̂f (k, t) :=

cf
s+λf

[k̄x(k)x̂(t) + k̄d(k)]

Adaptive Differentiator Gain L(x̂, k, t) := k̄1(k)|x̂|+ k̄2(k) + k̄3(k)%(t) + km

Global Differentiator

ζ̇0 = v0 = −λ0L(x̂, k, t)
1
p+1 |ζ0 − e|

p
p+1 sgn(ζ0 − e) + ζ1,

...

ζ̇i = vi = −λiL(x̂, k, t)
1

p−i+1 |ζ0 − e|
p−i
p−i+1 sgn(ζi − vi−1) + ζi+1,

...

ζ̇p = −λpL(x̂, k, t)sgn(ζp − vp−1).

Sliding Variable σ̂ = ζρ−1 + · · ·+ l1ζ1 + l0ζ0

Modulation Function %(t) = θ̄(k)|ω(t)|+ d̂f (k, t) + δ , δ > 0

Output-Feedback SMC Law u = (−1)k+m%(t)sgn(σ̂)

2.6 Stability Analysis

The stability results are summarized in the next theorem.

Theorem 2. Consider the system (46) under assumption (A1) and the reference model in
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(48). The output-feedback SMC is given by (82), with modulation function % in (84), σ̂ in

(87) constructed with the state ζ = [ζ0 . . . ζρ−1]T of the adaptive HOSM differentiator (80)

with the variable gain L(x̂, k, t) selected as (78) and x̂ provided by the hybrid norm observer

(71). Then, for any initial condition, the monitoring switching stops and the sliding

surface σ̂ = 0 will be reached. Moreover, the closed-loop error system with dynamics (61)

is globally exponentially stable in the sense that Xe(t) and the output tracking error e(t)

converge exponentially to zero whereas all the remaining closed-loop signals are uniformly

bounded.

Proof 2. In what follows, ki > 0 are constants not depending on the initial conditions.

Let us assume a maximal time interval of definition for the existence of solution given by

[0, tM), where tM may be finite or infinite. The proof is divided into three steps.

STEP 1: In the first one, we need to show that the monitoring function switching

stops. By contradiction, suppose that k switches without stopping ∀t. Then, a(k) in

(66); k̄ω(k) in (71); k̄x(k) and k̄d(k) in (73); k̄1(k), k̄2(k), k̄3(k) in (78); θ̄(k) in (84)

increases unboundedly AND the term λx(k) in (71) decreases, as k → +∞. Thus, there

is a finite value k∗ such that: (a) the term a(k∗)e−
t

a(k∗)+1 will upper bound c0e
−λ0t in

(65); (b) the hybrid state-norm observer (71) satisfies x̂ > |X|; (c) consequently, the

updated gain L(x̂, k∗, t) > |e(ρ)(t)| by verifying the condition (79); (d) the terms θ̄(k∗)

and d̂f (k
∗, t) in (84) are sufficiently large so that the modulation function %(t) satisfies

(83) and (85); and (e) the control direction estimate in (82) verifies the following sign

relation sgn[(−1)k
∗+m] = −sgn[Kp].

From (b), ϕm(t) > RHS{(65)}, ∀t ∈ [tk∗ , tk∗+1), where RHS{·} denotes the right-

hand side of some inequality. From (d) and (e), we can conclude RHS{(65)} is a valid

upper bound for |e|. Hence, no switching will occur after t = tk∗, i.e., tk∗+1 = tM , which

leads to a contradiction. Therefore, ϕm has to stop switching after some finite time k = N

and tN ∈ [0 , tM).

STEP 2: In the second step, it is shown that the closed-loop system signals cannot

escape in finite time. By using the relations (54) and (60), one has that X = Xe + Xm

and the regressor vector

ω = Ω1Xe + Ω1Xm + Ω2r . (88)
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Let xm := [ym ẏm . . . y
(ρ−1)
m ]T and xe := x − xm. From (61), it can be shown that

e(i) = H0A
iXe, for i = 0, . . . , ρ−1, hence |xe| ≤ k0|Xe|. Therefore, since xm is uniformly

bounded, then x = xe + xm can be affinely norm bounded in |Xe|. Thus, one can conclude

that |x| ≤ k1|Xe| + k2, and consequently, |x| ≤ k3‖(Xe)t‖ + k4. Due to assumption (A1)

concerning the linear growth condition of the nonlinear disturbances with respect to the

unmeasured state x, from (56) and (57), one has

|Xm| ≤ k5‖(Xe)t‖+ k6 . (89)

Finally, from (54), (88) and (89), we conclude ω, the term df in (61), and consequently

the control input u with modulation function % in (84), for k = N (finite and fixed), are

all affinely norm bounded by X or Xe, i.e.,

|u| , |df | , |ω| ≤ ka‖Xt‖+ kb , (90)

|u| , |df | , |ω| ≤ kc‖(Xe)t‖+ kd . (91)

Thus, the system signals will be regular and, therefore, can grow at most exponentially [57],

i.e., tM = +∞ by continuation of solutions [80].

STEP 3: This fact leads us to the third step of the proof. There exist two finite-

time instants T1 > 0 and T2 > 0 such that (79) and (83) are satisfied, ∀t > max{T1,T2}.
Then, the ideal sliding variable is exactly estimated, i.e., σ̂ ≡ σ and the relative degree

compensation is perfectly achieved. Moreover, from [84, Lemma 1], the ideal sliding mode

σ̂(t) ≡ σ(t) ≡ 0 is achieved in finite time. Even if the monitoring function switching stops

at a incorrect sign of the control direction and/or %(t) < |u∗| in (83), an exponentially

convergent upper bound for σ(t) is still obtained from (66)–(67) and (86) since e(t) → 0

and Lm(s) is a Hurwitz polynomial. Therefore, if the index k becomes constant in the

monitoring function ϕm(t) for all consecutive time interval, we can continue concluding

that σ(t) tends to zero at least exponentially.

As mentioned in Section 2.2, since σ in (86) is the relative degree one output for

(61), it is possible to rewrite it into the normal form [80] such that the states of the

error system are exponentially ISS with respect to σ. It can be shown reminding that
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Lm(s)Wm(s) = 1/(s+ γm). From (61) and

σ = Lm(s)Wm(s)Kp

[
u− θ∗Tω + df

]
=

Kp

s+ γm

[
u− θ∗Tω + df

]
,

one gets Ẋe = AcXe +Bc(σ̇ + γmσ). Further, using the transformation Xe := X̄e +Bcσ,

one has

˙̄Xe = Ac X̄e + (AcBc + γmBc)σ , (92)

which clearly implies an ISS relationship from σ to either Xe or X̄e since Ac is Hurwitz.

Thus, Xe and e = H0Xe tends exponentially to zero as well as the state ζ of the differen-

tiator, which is also driven by e. From (91), we conclude that all remaining signals are

uniformly bounded. This completes the demonstration of the theorem. �

In fact, according to the results of Theorem 2, the monitoring function switching

may stop at an incorrect sign of the control direction and/or %(t) < |u∗|. However, two

measures can be taken to force the monitoring function switching always stops at a correct

sign of the control direction and satisfying %(t) ≥ |u∗|:

(i) the definition of a new upper bound Θ for the parameter vector θ used in (83)–

(84) such that Θ ≥ max{|θ∗|, |θ†|}, where θ† is the model matching vector with respect

to an unstable reference model M †(s) = 1
Lm(s)(s−am)

, with Lm(s) as in (49) and am > 0, so

that equation (62) can be rewritten as e = M †(s)Kp[u− u†], with u† = θ†
T
ω + df ;

(ii) the inclusion of a destabilizing term ud(t) in the control law (82) such that the

equilibrium e = 0 is non attractive at least for some arbitrarily small neighborhood of it

when the control direction is wrong and simultaneously %(t) < |u†|. One possible choice

would be u = (−1)k+m[%(t) + ud(t)]sgn(σ̂), where

ud(t) =

kσ|σ̂(t)|− 1
2 , |σ̂| > ε ,

0, |σ̂| ≤ ε ,

(93)

for constants kσ > 0 and 0 < ε < 1. Notice that the dead-zone operator is employed

to avoid an unbounded control signal when σ̂ = 0, being uniformly bounded for all σ̂
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and such that the regular growth conditions in (90) and (91) are preserved. Then, the

following corollary can be enunciated.

Thus, for ε sufficiently small, the switching process stops at t = tk = tN with the

sign of Kp correctly estimated and %(t) ≥ |u∗| being always verified when the term ud(t)

is added to the original modulation function (84) in the control law (82).

Corollary 1. In addition to the results of Theorem 2, if we replace the control law (82)

by

u = (−1)k+m[%(t) + ud(t)]sgn(σ̂) , (94)

with ud(t) defined as in (93) and ε ∈ (0 , 1) sufficiently small, then, we can conclude that

the switching process stops at t = tk = tN < +∞ with the sign of Kp correctly estimated

and %(t) ≥ max{|u∗|, |u†|}. Consequently, the ideal sliding mode σ̂ = σ = 0 is always

achieved in finite time.

Proof 1. Since we have supposed that the monitoring function switching stopped with

k = N where N < +∞, the tracking error e(t) as well as the error state Xe(t) and the

augmented state X enter to a compact set where the exact differentiator will provide the

exact estimate of the ideal sliding variable σ, i.e. σ̂ = σ. Now, suppose that we end up with

an incorrect control direction estimate AND %(t) < |u†|. Then, for all |σ̂| > ε, the dynamic

equation for σ can be written as σ̇ = amσ+ |Kp|[% sgn(σ)+kσ|σ|−
1
2 sgn(σ)−u†]+π, where

π is an exponentially decaying term due to initial conditions. Consequently, the product

σσ̇ is computed by

σσ̇ = amσ
2 + |Kp|[%|σ|+ kσ|σ|

1
2 − u†σ] + πσ , |σ| > ε .

From the modulation function % in (84) and the relationships for the regressor vector ω in

(54) and (88), it is possible to state the difference |%−u†| ≤ R, for some constant R > 0,

since e(t) and Xe(t) are converging to zero as t → +∞. So, there exists td < +∞ such

that |π(t)| < δ and, for ε sufficiently small, the term between brackets in σσ̇–equation be-

comes positive since the square-root function dominates the linear one in the neighborhood

of the origin. Consequently, σσ̇ > 0, ∀t ≥ td. Hence, σ would diverge as t → ∞ for all

initial conditions if the control direction is incorrectly estimated, i.e., σ(t) would not achi-

eve the residual set where |σ| ≤ ε, for ε sufficiently small. Since the error system with
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state Xe is ISS with respect to σ, the tracking error e := H0Xe must diverge as well. It

generates a contradiction since e(t) should converge to zero as ϕm(t) converges when the

switching process stops.

The same proof by contradiction/absurd can be derived considering that the control

direction was correctly estimated BUT we still have %(t) < |u∗|, where u∗ = θ∗
T
ω + df as

in (62). In this case, θ∗ is the model matching vector with respect to the stable reference

model Wm(s) = 1
Lm(s)(s+γm)

in (48). Following the analogous steps performed before, we

can write the dynamic equation σ̇ = −γmσ−|Kp|[% sgn(σ) + ud(t) sgn(σ)−u∗] +π. Since

the monitoring function converges to zero when k is kept fix, we can conclude that e(t)

and σ(t) tend exponentially to zero, according to (86). Thus, for t sufficiently large, we

can guarantee the set |σ| ≤ ε is ultimately reached. Since ud(t) = 0 for |σ| ≤ ε, we can

write:

σσ̇ = −γmσ2 − |Kp|[%|σ| − u∗σ] + πσ , |σ| ≤ ε .

Finally, for |σ| ≤ ε < 1 and ε sufficiently small, there exists td < +∞ such that the linear

term u∗(t)σ(t) will dominate the remaining elements in the right-hand side of σσ̇ since

|u∗| > %(t) by assumption. Again, we can conclude σσ̇ > 0, ∀t ≥ td.

Thus, for ε sufficiently small, the switching process stops at t = tk = tN with the

sign of Kp correctly estimated and %(t) ≥ max{|u∗|, |u†|} being always verified when the

term ud(t) is added to the original modulation function (84) in the control law (82).

Remark 3 (Tracking Control × Pure Differentiaton Problem). In the results of Theo-

rem 2, we are interested in the global exact differentiation applied to tracking problem by

means of output feedback, rather than pure differentiation simply. Reminding that ρ is the

relative degree of the plant, the differentiator gain L(x̂, k, t) must be an upper bound for

the ρth derivative of the output error e(t). Consequently, the implementation of L(x̂, k, t)

demands to dominate unknown terms with unknown bounds, which are time-varying and

can grow with the unmeasured state variables as well. On the other hand, the pure diffe-

rentiation of any exogenous signal f(t) is a particular scenario, where the differentiator

gain can be exclusively designed as a class K function of the switching index k in order

to majorize the higher derivatives of f(t), which are assumed uniformly bounded by unk-
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nown constants. As discussed in the introductory section, the latter problem has already

been handled by [13]. The differentiation of signals with unbounded higher derivatives was

introduced in [11] and, more recently, in [50]. However, in both publications, a known

time-varying upper bound for the higher derivatives of f(t) are assumed known to be ap-

plied as the differentiator gain.

2.7 Simulation Example

Consider the following perturbed linear system in normal form (46)–(47) with

relative degree two:

ẋ1 =x2

ẋ2 =− 1.5x2 + x1 + 15
[
x

2/3
1 x

1/3
2 + 1

]
sin(t) + u

y =x1

where the state vector is x = [x1 x2]T . From (46), the nonlinear disturbance can be

written as

d(x, t) = −1.5x2 + x1 + 15
[
x

2/3
1 x

1/3
2 + 1

]
sin(t) ,

which satisfies (A1) for kx = 17.5 and kd = 15. The control aim is the trajectory tracking

of ym = 0.5
(s+0.5)(s+1)

r, with

r(t) =

 2.5 sin(3t) , t < 20 ,

0 , t ≥ 20 .
(95)

The ideal sliding variable is chosen as σ = ė + e, which is estimated by σ̂ = ζ1 + e using

a first order robust differentiator (80) with ρ = 2.

The parameters of the adaptive modulation function %(t) in (84) are θ̄(k) = k,

the small constant δ = 0.001, and d̂f (k, t) defined as in (73), with cf = 1, λf = 0.4,

k̄x(k) = k̄d(k) = k.

The following I/O filters (52) were used ωu = 1
s+4

u, ωy = 1
s+4

y. For the norm

observer (71), the parameters are based on the positive monotonically sequences of the

switching index k, such that: λx(k) = 0.1 + 4
1+k

and k̄ω = k.

The initial conditions of the plant and the differentiator were chosen as x1(0) =
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3 , x2(0) = −1 , ζ0(0) = 1 , ζ1(0) = 2. Since e = x1 − ym, the variable gain L(x̂, k, t) of

the differentiator is computed as (78), where k̄1(k) = k̄2(k) = k̄3(k) = k + 1 and km

must be an upper bound for |ÿm(t)| = | − 1.5ẏm − 0.5ym + 0.5r|. The signals ym , ẏm can

be directly implemented from the state-space representation of the reference model. The

Euler integration method with fixed integration step of 10−5 s was used for the simulations.

The results obtained for the proposed SMC are shown in Figure 4(a) to Figure 4(f).

In Figure 4(c), it can be seen how the norm observer state x̂ overcomes after a finite time

the actual value of the x-norm. Figure 4(b) shows the adaptive gain L(x̂, k, t) applied

to upper bound |ë(t)| used in the differentiator (80). Using the control signal of Figure

4(d), the exact tracking is achieved as shown in Figure 4(a), despite the disturbances and

uncertainties. In Figure 4(e), the behavior of the error signal norm and the monitoring

function are presented. As expected, every time instant (tk) the monitoring function meets

the tracking error, a jump is observed followed by an exponential decreasing profile.
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(a) Exact tracking: output signals y(t)
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(b) Variable gain L(x̂, k, t) (norm bound
for ë(t)) of the variable gain HOSM dif-
ferentiator.
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(e) Monitoring function ϕm(t) and out-
put error norm |e(t)|.
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ė(t)
ζ1(t)

(f) Estimate of ė(t) given by the propo-
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rentiator.

0 2 4 6 8

-5

0

5

Figure 4 – Simulation results.

2.8 Application to Wing Rock Control

Wing rock is an undamped nonlinear oscillation phenomenon primarily in the roll

axis that is exhibited by many combat aircraft at high angles of attack. Wing rock occurs

due to asymmetric vortex shedding and vortex bursting and causes maneuver limitations

ranging in severity from degradation in tracking effectiveness to loss of control [86]. The
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oscillation is featured by a limit cycle which has a strong relationship to flow conditions,

attack angle, and to aircraft setup.

In this application, according to [86, 87], the following model for a fighter aircraft

with 80o swept back wing is employed:

ẋ1 = x2 , (96)

ẋ2 = d(x, t) + u , (97)

d(x, t) = −ω̄2x1 + µ1x2 + b1x
3
1 + µ2x

2
1x2 + b2x1x

2
2 , (98)

y = x1 , (99)

where x = [x1 x2]T is the state vector with roll angle x1 and roll rate x2, y is the output

signal and u the control input. The parameter ω̄ is the wing rock limit cycle frequency, b1,

b2, µ1 and µ2 are other system parameters, whose values dependent on the attack angle

α and are shown in Table 3.

Table 3 – Variation of wing rock model parameters with angle of attack α.

α ω̄ µ1 b1 µ2 b2

15.0o 0.0603 -0.0085 -0.0502 0.3531 -0.2955
21.5o 0.1220 0.0042 0.0167 -0.0658 0.0858
22.5o 0.1287 0.0060 0.0201 -0.0803 0.2091
25.0o 0.1419 0.0105 0.0260 -0.1273 0.5197

As a consequence of the limit cycle phenomenon, the amplitude of periodic oscilla-

tion is independent of initial conditions and the state x is bounded by an unknown scalar

χ > 0, i.e., |x(t)| < χ. This fact leads us to conclude that the input disturbance d(x, t)

can be affinely norm bounded by, ∀|x(t)| < χ:

|d(x, t)| ≤ ω̄2|x1|+ |µ1||x2|+ |b1||x1|3 + |µ2||x1|2|x2|+ |b2||x1||x2|2 ,

≤ ω̄2|x|+ |µ1||x|+ |b1||x|3 + |µ2||x|3 + |b2||x|3 ,

≤ [ω̄2 + |µ1|+ (|b1|+ |µ2|+ |b2|)χ2]|x| ,

≤ kx|x|+ kd , (100)

where kx > ω̄2 + |µ1| + (|b1| + |µ2| + |b2|)χ2 and kd ≥ 0 are unknown upper bounds, as

in assumption (A1). The control objective is to ensure the system stabilization at x = 0.
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In other words, forcing the output y = x1 to track a reference model ym with r = 0, we

can also guarantee x2 = ẏ = 0. Thus, according to (48), the following reference model is

employed

ym =
1

(s+ 5)2
r . (101)

Comparing (48) and (49) to (101), it is easy to obtain γm = 5 and Lm(s) = s + 5. Since

e = y− ym, the ideal sliding variable can be obtained as σ = ė+ 5e. As discussed before,

it can not be implemented since ė is not available. Therefore, by using the proposed

adaptive HOSM differentiator (80), with λ0 = 5 and λ1 = 3, the following estimate for σ

can be obtained according to (87): σ̂ = ζ1 + 5ζ0.

For the construction of the time-varying gain L(x̂, k, t) in (78), the switching se-

quences are computed by k̄1(k) = k̄2(k) = k̄3(k) = k + 1 and km being replaced by

|ÿm| = |− 10ẏm− 25ym + r|. The signals ym, ẏm can be implemented from the state-space

representation of the reference model (101).

The regressor vector (51) is obtained with the I/O filters in (52), by setting Φ = −4

and Γ = 1. The monitoring function ϕm in (66) is designed to perform jumps multiples

of 0.0524 rad (three degrees), i.e., a(k) = 0.0524k. The hybrid state-norm observer

x̂(t) and the disturbance norm bound d̂f (k, t) are calculated according to (71) and (73),

respectively. In this application, their parameters were chosen as: λx(k) = 0.1 + 1
1+k

,

k̄ω = k + 1, k̄x(k) = 0.5k, k̄d(k) = 0.5k, cf = 0.01 and λf = 1. Finally, the proposed

output-feedback SMC law (82) with modulation function (84) are designed considering

θ̄(k) = k and δ = 0.01. In addition, the control direction was initialized with the incorrect

sign (m = 1).

The results of control method are presented in Figure 5 and Figure 6. In particular,

the phase portrait in Figure 5 shows the open-loop limit-cycle oscillation (in red) and the

closed-loop behavior (in blue) of the aircraft system (96)–(99) with parameter α = 25.0o.

It is remarkable how the proposed controller can suppress the wing rock oscillation, driving

the system gracefully to the origin x1 = x2 = 0.
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Figure 5 – Phase portrait of the open-loop system (red line) versus the closed-loop system
(blue line).
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Figure 6 – Suppression of the wing rock phenomenon.
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3 VARIABLE GAIN SUPER-TWISTING ALGORITHM

This chapter presents an output-feedback control strategy based on the variable

gain super-twisting algorithm. The proposal achieves robust global/semi-global exact

tracking results for plants with arbitrary relative degree. This is ensured in spite of pa-

rametric uncertainties and disturbances that may be state-dependent and time-varying.

The construction of such controller is based on a (non) homogeneous higher-order sliding

mode differentiator with dynamic gains. The gain adaptation schemes for the controller

and for the differentiator are based on norm observers to overcome the lack of state mea-

surement. The continuous nature of the obtained control signal alleviates the chattering

phenomenon. The stability properties of the proposed controller are demonstrated by

means of a Lyapunov function based analysis. The theoretical results are verified through

a simulation example, and experimentally tested on a seesaw module.

3.1 Problem Formulation

Consider the class of uncertain systems that can be transformed into the following

normal form [80]:

η̇ = A0η + B0ξ , (102)

ξ̇ = Aρξ + BρKp[u+ d(x, t)] , (103)

y = Cρξ , (104)

where u ∈ R is the input, y ∈ R is the measured output, d(x, t)∈R is a state dependent

and time varying nonlinear disturbance. The vector xT = [ηT ξT ] ∈ Rn is the unmeasured

state with η ∈ R(n−ρ) being referred as the state of the inverse or zero dynamics and

ξ = [y ẏ . . . y(ρ−1)]T being the external dynamics state. The triple (Aρ, Bρ, Cρ) is in the

Brunovsky’s controller form [80], the pair (A0, B0) is controllable, and A0 is Hurwitz in

order to satisfy the minimum-phase condition. The high frequency gain (HFG) Kp∈R is

assumed positive without loss of generality.

The nonlinear system (102)–(104) has arbitrary relative degree (denoted by ρ ≥ 1)

with respect to the measured output y, and it can be represented in the following compact
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form:

ẋ = Apx+Bp[u+ d(x, t)] , y = Hpx . (105)

The uncertain matrices

Ap =

A0 B0

0 Aρ

 , Bp =

 0

BρKp

 , Hp =
[
0 Cρ

]
, (106)

belong to some compact set, such that the necessary uncertainty bounds to be defined

later are available for design.

Notice that the relative degree relaxation is by itself a contribution with respect

to [88]. There, an output-feedback generalization of the VGSTA by [51] is proposed under

the condition of the plants having relative degree one. On the other hand, previous output-

feedback version of fixed gains STA in [89] renders only local stability results and/or assu-

mes uniformly bounded nonlinear disturbances, i.e., |d(x, t)| ≤M = constant. Moreover,

there are continuous finite-time controllers [90, 91] restricted to linear plants represented

by a chain of integrators (without η–dynamics) at most perturbed by uniformly continu-

ous exogenous functions of the time, i.e., no state-dependence for the disturbances are

allowed. Finally, although “quasi-continuous”controllers by [92] can handle disturbances

with variable bounds using state feedback, the control signal is ultimately discontinuous

when sliding mode takes place, which deviates from the scope of the present contribution.

In order to alleviate the restrictions mentioned above, we further assume that:

(A1) The uncertain input disturbance d(x, t) and its gradient are bounded by

continuous functions almost everywhere, and in particular d(x, t) is norm bounded by

|d(x, t)| ≤ kx|x|+ kd , ∀x, t ,

where kx, kd ≥ 0 are known scalars.

The smoothness condition imposed on the unknown nonlinear disturbance d(x, t)

and its derivative was already assumed in earlier works about VGSTA, see [51]. As usual

in the literature of continuous STA, it restricts the class of disturbances coped with to

continuous functions. However, more general stability results (rather than only local

stability) can be obtained when variable upper bounds such as |d(x, t)| ≤ kx|x|+ kd, with
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kx > 0 and kd > 0 being known constants, are assumed instead of constant and more

conservative upper bounds (e.g., |d(x, t)| ≤ kd) generally applied in earlier publications.

The challenge here is to prove non local stability properties (global/semi-global) for the

closed-loop system using only output feedback. Basically, we need to find a way to

upper bound the state-dependent disturbance d(x, t) using measured signals (the state x

is unmeasured) while any possible finite-time escape is avoided. For this reason, we have

introduced inequality |d(x, t)| ≤ kx|x|+ kd. The previous linear upper bound in x allows

us to have system signals which are regular and that can grow at most exponentially [57].

It will be crucial to avoid finite-time escape for the system signals while perfect-exact

tracking using output feedback is pursued.

We consider the following model for the reference signal ym(t) ∈ R:

ym = Wm(s) r , Wm(s)=(s+γm)−1L−1
m (s) , γm>0, (107)

where r(t) ∈ R is an arbitrary uniformly bounded piecewise continuous reference signal

and Lm(s) is a Hurwitz polynomial defined as follows

Lm(s)=s(ρ−1) + lρ−2s
(ρ−2) + · · ·+ l1s+ l0. (108)

The transfer function matrix Wm(s) has the same relative degree ρ, as well as the plant,

and its HFG is the unity.

The control problem is to find u such that for arbitrary initial conditions, the

output error

e(t) := y(t)− ym(t) (109)

tends to zero.

For d ≡ 0 and known plant, the ideal control signal u∗ = θ∗
T
ω, with θ∗ =[

θ∗
T

1 θ∗
T

2 θ∗3 θ
∗
4

]T
, θ∗1, θ

∗
2 ∈ R(n−1), θ∗3, θ

∗
4 ∈ R, achieves the matching between the closed-

loop transfer function matrix and Wm(s), using the following regressor vector

ω = [ωTu ωTy y r]T , (110)
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with wu, wy ∈ R(n−1) obtained from input–output (I/O) state variable filters given by [16]:

ω̇u = Φωu + Γu , ω̇y = Φωy + Γy , (111)

where Φ ∈ R(n−1)×(n−1) is Hurwitz and Γ ∈ R(n−1) is chosen such that the pair (Φ, Γ)

is controllable. The matching conditions require that θ∗4 = K−1
p . Define the augmented

state vector

X=[xT , ωTu , ω
T
y ]T , (112)

with dynamics described by

Ẋ = A0X +B0u+B′0d, y = H0X ,

where

A0 =


Ap 0 0

0 Φ 0

(ΓHp) 0 Φ

 , B0 =


Bp

Γ

0

 , B′0 =


Bp

0

0

 , H0 =
[
Hp 0 0

]
.

Then, by adding and subtracting B0θ
∗Tω and noting that there exist matrices Ω1 and Ω2

such that

ω=Ω1X+Ω2r , (113)

one has

Ẋ=AcX +BcKp[θ
∗
4r + u− u∗] +B′0d , y=H0X , (114)

where Ac = A0 +B0θ
∗TΩ1, and Bc = B0θ

∗
4. We have that (Ac, Bc, H0) is a non-minimal

realization of Wm(s). It is worth mention that the generalized augmented dynamics (114)

is already different from those found in the usual Model Reference Adaptive Control

(MRAC) literature [16, 57] since now disturbances are being considered. The reference

model can be rewritten as

Ẋm=AcXm +BcKp[θ
∗
4r − df ] +B′0d , ym=H0Xm , (115)
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with the following equivalent input disturbance

df = Wd(s)d , (116)

where

Wd(s) = [Wm(s)Kp]
−1 W̄d(s) , (117)

W̄d(s) = H0 (sI − Ac)−1B′0 . (118)

Therefore, ym = Wm(s)Kp

[
θ∗T4 r −Wd(s)d

]
+W̄d(s)d and it is straightforward to conclude

that ym = Wm(s) r. Note that (117) is a stable and proper transfer function. In addition,

[Wm(s)Kp]
−1 =K̄ρs

ρ+K̄ρ−1s
ρ−1+. . .+K̄0, where K̄i∈R, i=0, . . . , ρ are constants. Thus,

by defining the state

Xe := X −Xm (119)

the complete error dynamics can be obtained by subtracting (115) from (114), which leads

to

State Space: Ẋe = AcXe +BcKp[u− θ∗
T

ω + df ] , (120)

e = H0 Xe,

I/O Form: e = Wm(s)Kp

[
u− θ∗Tω + df

]
. (121)

Remark 4. The importance of using MRAC methodology by means of I/O filters is not

to identify the unknown parameters, as in classical adaptive control. Moreover, it does not

rely only in deriving the full-error equation (120) from the augmented state X, but it does

yield a complete output-feedback framework on which a norm bound for the unmeasured

state can be obtained through state-norm observers as follows. y

3.2 State-Norm Estimation

Considering assumption (A1) and applying [8, Lemma 3] to (114), it is possible to

find k∗x > 0 such that, for kx ∈ [0, k∗x] a norm bound for X and x can be obtained through
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stable first order approximation filters (FOAFs) (see details in [8]). Thus, one has

|x(t)| ≤ |X(t)| ≤ |x̂(t)|+ π̂(t) , (122)

˙̂x(t) = −λxx̂(t) + [c1kd + c2|ω(t)|] , (123)

with c1, c2, λx > 0 being appropriate constants that can be computed by the optimization

methods described in [56]. In particular, the parameter λx in (123) is defined by λx :=

γ0 − |B′0|kx, where |B′0|kx > 0 is a constant smaller than γ0 computed with B′0 given

in (114), and γ0 > 0 being the stability margin2 of Ac in (114). In a few words, kx

must be small enough to no break the ISS property of (114) from d to X. In this sense,

(122)–(123) state that the norm observer estimate x̂(t) provides a valid norm bound for

the unmeasured state x of the uncertain and disturbed plant, except for exponentially

decaying terms due to the system initial conditions, denoted here by π̂(t).

From (116), we can write |df | ≤ |Wd(s)d|. Moreover, from (A1) and (123), one has

|d(x, t)| ≤ kxx̂(t) + kd, modulo π̂ term, and one can write |df | ≤ d̂f + π̂f , where π̂f is an

exponentially decaying term,

˙̂
df (t) = −λf d̂f (t) + cf [kxx̂(t) + kd] , (124)

and
cf

s+λf
is a FOAF designed for Wd(s), with adequate positive constants cf and λf .

At the price of some conservatism, we can simplify the FOAF design by choosing cf

sufficiently large and λf sufficiently small.

In this section, assumption (A1) enable us to design the state-norm observer so

that the following norm bound |x(t)| < |X(t)| ≤ x̂(t) ,∀t > T0, can be achieved in some

finite time T0 > 0. Therefore, the disturbance can be ultimately dominated as desired

(e.g., |d(x, t)| ≤ kxx̂(t) + kd) such that the variable gain L(x̂, t) of the differentiator (in

Section 3.3) as well as the gains k1(x̂, t) and k2(x̂, t) of the proposed output-feedback

version of the VGSTA (in Section 3.4.2) can be finally constructed.

2Let {λi} be the eigenvalues of Ac, the stability margin of Ac is defined by γ0 := mini[−Re(λi)].
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3.3 HOSM Differentiator with Dynamic Gains

The state-norm estimation (122)–(123) was applied in [54] for the construction of a

time-varying gain HOSM differentiator achieving exact differentiation of signals with any

initial conditions. To this end, we need an upper bound for the unknown higher derivative

|eρ(t)|.
From (103), assumption (A1) and using the augmented state X defined in (112),

the following upper bound for y(ρ) is obtained

|y(ρ)| ≤ L(X, t) = k1|X|+ k2 + k3|u| , (125)

where k1 ≥ Kpkx, k2 ≥ Kpkd and k3 ≥ Kp are known positive constants.

Now, from (125) and (109), we can write

|e(ρ)(t)| ≤ L(X, t) + |y(ρ)
m (t)| . (126)

The following upper bound involving the norm observer variable x̂(t), can be obtained

using (122):

|e(ρ)(t)| ≤ L(x̂, t) + |y(ρ)
m (t)| = k1|x̂|+ k2 + k3|u|+ km , (127)

modulo exponential decaying terms due to initial conditions which take into account the

transient of the FOAF. The known positive constant km satisfies |y(ρ)
m (t)| ≤ km.

Our output-feedback generalization for VGSTA is an absolutely continuous func-

tion u constructed with the signal x̂ in (123). Thus, we can define the term

L(x̂, t) := k1|x̂|+ k2 + k3|u|+ km , (128)

using only continuous signals and write the following norm bound

|e(ρ)(t)| ≤ L(x̂, t) , ∀t ≥ T , (129)

for some finite time T > 0.

In light of (128)–(129), we can introduce the following HOSM based differentiator
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of order p = ρ− 1 for the output error e ∈ R:

ζ̇0 =v0 = −λ0L(x̂, t)
1
p+1 |ζ0 − e(t)|

p
p+1 sgn(ζ0 − e(t)) + ζ1,

...

ζ̇i=vi=−λiL(x̂, t)
1

p−i+1 |ζi−vi−1|
p−i
p−i+1 sgn(ζi−vi−1)+ζi+1,

...

ζ̇p=−λpL(x̂, t)sgn(ζp − vp−1) .

(130)

According to the results in [93], the following non-homogeneous version of the

proposed HOSM based differentiator (130) can also be derived

ζ̇0 =v0 = −λ0L(x̂, t)
1
p+1 |ζ0 − e(t)|

p
p+1 sgn(ζ0 − e(t)) + ζ1 − µ0(ζ0 − e(t)),

...

ζ̇i=vi=−λiL(x̂, t)
1

p−i+1 |ζi−vi−1|
p−i
p−i+1 sgn(ζi−vi−1)+ζi+1 − µi(ζi−vi−1),

...

ζ̇p=−λpL(x̂, t)sgn(ζp − vp−1)− µp(ζp − vp−1) ,

(131)

which may provide for faster convergence compared with (130) due to the additional linear

terms with appropriate constants µi > 0, for i = 0 , . . . , p.

Since L(x̂, t) in (129) is generated by signals which can grow exponentially at most

(there is no escape in finite time) due to the linear growth condition (A1), then the

logarithmic derivative L̇/L is bounded and the following equalities

ζ0 = e(t) , ζi = e(i)(t) , i = 1 , . . . , ρ− 1 , (132)

can be established in finite time according to [11,28,50], provided the parameters λi (and

µi) are properly chosen. The boundedness of all closed-loop signals is presented in the

proof of the main theorem.

Unlikely conventional HOSM differentiators with fixed-constant gains [17, 23, 93],

the convergence of the differentiators (130) and (131) with dynamic gains is non local,

since the upper estimation (129) holds independent of any initial condition of the closed-

loop signals. Thus, the state trajectory is NOT restricted a priori to any compact set such

that |e(ρ)(t)| ≤ Cρ, where Cρ > 0 is a valid local upper bound for the higher-derivative
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of |e(t)|. On the other hand, our main contribution with respect to [11,28,50] is to show

how to construct the differentiator gain for time-varying and state dependent terms in

the signal |e(ρ)(t)| using only input-output information in order to satisfy the conditions

raised therein.

3.4 Output-Feedback Variable Gain Super-Twisting

In sliding mode control, the relative degree one sliding variable σ is designed to

ensure that the reduced-order model meets the performance requirements, once the motion

is restricted to the manifold σ = 0.

For higher relative degree plants, the operator Lm(s) defined in (108) can be used

to overcome the relative degree obstacle. The operator Lm(s) is such that Lm(s)Wm(s)

have relative degree one. The ideal sliding variable σ=Lm(s)e is given by

σ = e(ρ−1) + · · ·+ l1ė+ l0e (133)

=

ρ−1∑
i=0

liH0A
(i)
c Xe = H̄Xe ,

where the second equality is derived from (120).

Remark 5. Regarding the choice of a linear combination of the error derivatives for the

ideal sliding variable σ in (133), we can point out two major advantages, as discussed

in [94]: (a) simplicity when comparing to nonlinear functions which results in finite-

time convergence; and (b) we can expect lower levels of chattering in practice caused by

unmodelled dynamics. In addition, the obtainment of general nonlinear sliding surfaces

which allow us to conclude finite-time convergence for the tracking error signal rather than

exponential one seems to be a really hardy topic of research since only the existence of such

general nonlinear sliding surfaces were proved in the current literature, but the design of

them were not presented yet. Some advances were restricted to finite-time stabilization of

linear plants represented by a chain of integrators. For more details, see [95]. y

Note that {Ac, Bc, H̄} is a non-minimal realization of Lm(s)Wm(s). From (107)–
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(108), we have

σ = Lm(s)Wm(s)Kp

[
u− θ∗Tω + df

]
=

Kp

s+ γm

[
u− θ∗Tω + df

]
. (134)

Then, the σ-dynamics can be expressed as

σ̇ = Kpu+ f(X, σ, t) , (135)

with

f(X, σ, t) = −γmσ −Kp

[
θ∗

T

ω − df
]
. (136)

The above equation can be rewritten as

f(X, σ, t) =

g1(X,σ,t)︷ ︸︸ ︷
f(X, σ, t)− f(X, 0, t) +

g2(X,t)︷ ︸︸ ︷
f(X, 0, t) , (137)

= g1(X, σ, t) + g2(X, t) (138)

where g1(X, σ, t) = 0 if σ = 0. Therefore, it follows that

g1(X, σ, t) = −γmσ , (139)

g2(X, t) = −Kp

[
θ∗

T

ω − df
]
. (140)

3.4.1 State-Feedback Variable-Gain STA

Consider the state-feedback VGSTA proposed in [51]:

u = −k1 (X, t)φ1 (σ)−
∫ t

0

k2 (X, τ)φ2 (σ) dτ , (141)

where

φ1 (σ) = |σ| 12 sgn (σ) + k3σ

φ2 (σ) = 1
2
sgn (σ) + 3

2
k3 |σ|

1
2 sgn (σ) + k2

3σ , k3 > 0 .

The standard STA is a particular case, where k3 = 0 and the gains k1 and k2 are constants.

The constant k3 > 0 allows to deal with perturbations growing linearly in σ, i.e., outside

of the sliding surface, whereas the variable gains k1 and k2 enable to render the sliding
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surface insensitive to perturbations growing with bounds given by known functions. Note

that the VGSTA algorithm (141) is not homogeneous and the control variable is absolutely

continuous, in contrast with the discontinuous nature of classical first order SMC.

The above continuous VGSTA is able to compensate perturbations f (x, t) sa-

tisfying (almost everywhere) [51]:

|g1 (X,σ, t)| ≤ %1 (X, t) |φ1 (σ)| = %1 (X, t)
[
1 + k3|σ|1/2

]
|σ|1/2 , (142)∣∣∣∣ ddtg2 (X, t)

∣∣∣∣ ≤ %2 (X, t) |φ2 (σ)| = 1

2
%2 (X, t) + k3%2 (X, t)

[
3

2
+ k3|σ|1/2

]
|σ|1/2 , (143)

where %1 (X, t) ≥ 0, %2 (X, t) ≥ 0 are known continuous functions.

3.4.2 Output-Feedback Variable-Gain STA

The controller (141) is implemented using the norm observer bound x̂, see (122)–

(123), instead of the unavailable X. Thus, from (142) and (143) we have that

|g1 (X, σ, t)| ≤ [%1(x̂, t) + |π1(t)|] |φ1 (σ)| ,∣∣ d
dt
g2 (X, t)

∣∣ ≤ [%2(x̂, t) + |π2(t)|] |φ2 (σ)| ,
(144)

where %1(x̂, t) ≥ 0, %2(x̂, t) ≥ 0 are known continuous functions satisfying

|%1(x̂, t)| ≤ Ψ1(|x̂|) + k̄1 , (145)

|%2(x̂, t)| ≤ Ψ2(|x̂|) + k̄2 , (146)

with Ψ1,2 ∈ K, constants k̄1,2 > 0, whereas π1(t) and π2(t) are exponential decaying terms

due to the initial conditions of the norm observer.

The inequality |g1(X, σ, t)| ≤ γm|σ| is straightforward obtained from (139). More-

over, from (140) it can be verified that |g2(X, t)| ≤ θ̄|ω(t)| + d̂f (t) with ω in (110) and

d̂f (t) defined in (124) and (123). The parameter θ̄ is a constant upper bound for θ̄ ≥ |θ∗|,
which can be computed due to the fact that Ap, Bp and Hp in (105) belong to some known

compact. Regarding
∣∣ d
dt
g2 (X, t)

∣∣, similar upper bounds for ḋf and ω̇ can be obtained from

(107), (111) and (124), noting that ω and d̂f are affinely norm bounded by x̂.

Notice that g1 and g2 in (139)–(140) will always satisfy the conditions (144) since

they are continuous functions in time generated by stable filters. At this point, we can
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conclude that the restrictions assumed in (A1) are really necessary and smooth bounded

disturbances d(x, t) together with their time derivatives must be assumed according to

(116), once Wd(s) is a proper transfer function. This restrictions are in agreement with

the disturbance smoothness assumption made for continuous SOSM based algorithms.

In this scenario with disturbances having bounded (time) derivatives, the functions

g1 and g2 could be simpler to be obtained by using the normal form (102)–(103) rather

than (120) for the σ-dynamics derivation. Reminding the σ-definition (133) and after

some calculation, the final expression for σ would be given by:

σ̇ = Kpu+ fσ(x, σ, t) , (147)

where fσ(x, σ, t) =
∑ρ−1

i=0 lie
(i+1)(t) − y(ρ)

m (t) + Kpd(x, t) and lρ−1 = 1, due to the monic

polynomial in (108). Following an analogous procedure to the one previously described,

new functions of g1(x, σ, t) and g2(x, t), depending on x and t, can be computed which

also satisfy the conditions (144) due to assumption (A1) and the norm-observer bound

(122).

Finally, the (non) homogeneous HOSM differentiator (130) or (131) can be applied

to obtain an exact estimate for σ as follows:

σ̂ = ζρ−1 + · · ·+ l1ζ1 + l0e . (148)

Then, the proposed output-feedback version for VGSTA can be written as

u = −k1 (x̂, t)φ1 (σ̂)−
∫ t

0

k2 (x̂, τ)φ2 (σ̂) dτ , (149)

where

φ1 (σ̂) = |σ̂| 12 sgn (σ̂) + k3σ̂ ,

φ2 (σ̂) = 1
2
sgn (σ̂) + 3

2
k3 |σ̂|

1
2 sgn (σ̂) + k2

3σ̂ , k3 > 0 .

The stability results are summarized in the next theorem.

Theorem 3. Consider the system (105) under assumptions (A1). The output-feedback

VGSTA based controller is given by (149) with σ̂ in (148) constructed with the state

ζ = [ζ0 . . . ζρ−1]T of the HOSM differentiator (130) (or (131)) and x̂ provided by the norm

observer (122)–(123). Suppose that for some known continuous functions %1 (x̂, t) ≥ 0,
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%2 (x̂, t) ≥ 0 the inequalities (144) are satisfied. Then, for any initial condition, the sliding

surface σ̂ = 0 will be reached in finite time if the variable gains in (149) are selected as

k1 (x̂, t) = δ + 1
β

{
1
4ε

[2ε%1 + %2]2 + 2ε%2 + ε+ [2ε+ %1] (β + 4ε2)
}
,

k2 (x̂, t) = β + 4ε2 + 2εk1 (x̂, t) ,
(150)

where β > 0, ε > 0, δ > 0 are arbitrary positive constants. Moreover, the closed-loop error

system with dynamics (120) is globally/semi-globally exponentially stable in the sense that

Xe(t) and the output tracking error e(t) converge exponentially to zero whereas all the

remaining closed-loop signals are uniformly bounded. y

Proof 3. The demonstration is divided into four steps.

– STEP 1 – Global/Semi-global stability and finite-time escape avoidance

First of all, let us assume a maximal time interval of definition for the existence

of solution given by [0, tM), where tM may be finite or infinite. For the sake of clarity, we

define the vector

zT := [XT
e , ζ

T ] . (151)

By continuity, given any R > 0, if |z(0)| ≤ R/2, ∃t∗ ∈ [0, tM) such that |z(t)| < R,

∀t ∈ [0, t∗). Hence, ∀t ∈ [0, t∗), any class-K function Ψi(a) can be norm bounded by

Ψi(a) ≤ kRa, with kR > 0 constant and possibly depending on R. On the other hand, all

κ’s and k’s without the R-indexation denote positive constants independent on R.

From (145), (146) and (150), one has ∀t ∈ [0, t∗):

|k1(x̂, t)| ≤ κR1 |x̂|+ κ1 , (152)

|k2(x̂, t)| ≤ κR2 |x̂|+ κ2 , (153)

where κR1,2 > 0 and κ1,2 > 0 are appropriate constants.

Reminding that ζ is assumed bounded ∀t ∈ [0, t∗) and k1,2(x̂, t) satisfy (152)–(153),

it is easy to show that u defined as in (149), with σ̂ in (148), is norm bounded by

|u| ≤ (κR3 + t∗)‖x̂t‖+ (κ3 + t∗) , ∀t ∈ [0, t∗) . (154)
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From (123), we know that |x̂| ≤ κ4‖ωt‖+κ5. By using the relations (113) and (119), one

has that X = Xe +Xm and the regressor vector

ω = Ω1Xe + Ω1Xm + Ω2r . (155)

Let xm := [ym ẏm . . . y
(ρ−1)
m ]T and xe := ξ − xm, with ξ in (103). From (120), it can be

shown that e(i) = H0A
iXe, for i = 0, . . . , ρ−1, hence |xe| ≤ κ6|Xe|. Therefore, since xm

is uniformly bounded, then ξ = xe+xm can be affinely norm bounded in |Xe|. In addition,

from (102), the η-dynamics is ISS with respect to y = Cρξ. Thus, one can conclude that

|x| ≤ κ7‖ξt‖ + κ8, and consequently, |x| ≤ κ9‖(Xe)t‖ + κ10. Due to assumption (A1)

concerning the linear growth condition of the nonlinear disturbances with respect to the

unmeasured state x, from (115) and (116), one has

|Xm| ≤ κ11‖(Xe)t‖+ κ12 . (156)

Finally, from (113), (155) and (156), we conclude ω, the term df in (120), and conse-

quently the control input u in (154) are all affinely norm bounded by X or Xe such that,

∀t ∈ [0, t∗):

|u| , |df | , |ω| ≤ ka‖Xt‖+ kb , (157)

|u| , |df | , |ω| ≤ kc‖(Xe)t‖+ kd , (158)

for some appropriate constants ka , kb , kc , kd > 0. Thus, the system signals will be regular

and, therefore, they can grow at most exponentially [57] during the interval [0, t∗). Thus,

the solution of (120) can diverge according to

|Xe(t)| ≤ ekLt|Xe(0)|+ ke , ∀t ∈ [0, t∗) , (159)

for some positive constants kL and ke, or equivalently |Xe(t)| ≤ Ψe(|Xe(0)|) + ke, for

some appropriate Ψe(·) ∈ K. Finally, given any R > ke, for |Xe(0)| ≤ R0, with

R0 ≤ Ψ−1
e (R − ke), then |Xe(t)| is bounded away from R as t → t∗. Taking into ac-

count (151) and (158), this implies that z(t) as well as any other signal of the closed-loop

system are uniformly bounded and cannot escape in finite time, i.e., tM = +∞ by con-

tinuation of solutions [80]. Hence, semi-global stability with respect to any ball of radius
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ke is guaranteed ∀Xe(0) since R and R0 can be chosen arbitrarily large. Moreover, if

k1(x̂, t) and k2(x̂, t) are such that u is a globally Lipschitz function of x̂ such that κR1 , κR2 ,

in (152)–(153) can be replaced by constants independents of initial conditions and/or the

relative degree is one (ρ = 1), then the stability properties become global.

– STEP 2 – The ideal sliding variable is exactly estimated

This fact lead us to the next step of the proof. There exist two finite time instants

T1 > 0 and T2 > 0 such that (129) and (144) are satisfied, ∀t > max{T1,T2}. From the

regularity condition in (157), one can conclude that (128) grows at most exponentially so

that the logarithmic derivative (L̇/L) of the variable gain L(x̂, t) of the differentiator is

always bounded [11], [28]. Since the gain is increasing when the plant state is not conver-

ging, the differentiator errors are forced to ultimately achieve a compact set on which the

sufficient conditions given by [11], [28] and [50] can be invoked and conclude that (132)

is satisfied. After that, the ideal sliding variable (of relative degree one) in (133) is indeed

exactly estimated by (148), i.e., σ̂ = σ.

– STEP 3 – Finite-time convergence of the sliding variable to zero

Thus, equation (135) driven by the output-feedback VGSTA (149) can be written

as

σ̇ = −Kpk1 (x̂, t)φ1 (σ) + z + g1 (X, σ, t) ,

ż = −Kpk2 (x̂, t)φ2 (σ) + d
dt
g2 (X, t) .

(160)

In the next, we show that the quadratic form [51]

V (σ, z) = χTPχ , (161)

where

χT =
[
|σ| 12 sign (σ) + k3σ , z

]
, (162)

P =

 p1 p3

p3 p2

 =

 β + 4ε2 −2ε

−2ε 1

 , (163)
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with arbitrary positive constants β > 0, ε > 0, is a (strict) Lyapunov function for

the subsystem (σ, z) of (160), showing finite time convergence. Function (161) is po-

sitive definite, everywhere continuous and differentiable everywhere except on the set

S = {(σ, z) ∈ R2 | σ = 0}.
The inequalities (142)–(143) can be rewritten as g1 (X, σ, t) = α1 (X, t)φ1 (σ) and

d
dt
g2 (X, t) = α2 (X, t)φ2 (σ) for some functions |α1 (X, t)| ≤ %1 (x̂, t) and |α2 (X, t)| ≤

%2 (x̂, t). Using these functions and noting that φ2 (σ) = φ′1 (σ)φ1 (σ) one can show that

χ̇ =

φ′1 (σ) {−Kpk1 (x̂, t)φ1 (σ) + z + g1 (X, t)}
−Kpk2 (x̂, t)φ2 (σ) + d

dt
g2 (X, t)


= φ′1 (σ)

 − (Kpk1 (x̂, t)− α1 (X, t)) 1

− (Kpk2 (x̂, t)− α2 (X, t)) 0

χ
= φ′1 (σ)A (t,X, x̂)χ ,

for every point in R2\S, where this derivative exists. For the sake of simplicity we will

consider Kp = 1. For the case of uncertain HFG, it is sufficient to consider the knowledge

of a lower bound 0 < kp ≤ Kp to normalize the equations in what follows. Similarly one

can calculate the derivative of V (σ, z) on the same set R2\S as

V̇ (σ, z) = φ′1 (σ)χT
[
AT (t,X, x̂)P + PA (t,X, x̂)

]
χ

= −φ′1 (σ)χTQ (t,X, x̂)χ,

where (the arguments of the functions were left out)

Q =

 2 (k1 − α1) p1 + 2 (k2 − α2) p3 F

(k1 − α1) p3 + (k2 − α2) p2 − p1 −2p3

 ,

and F is used to indicate a symmetric element. Selecting P as in (163) and the gains as
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in (150), we have

Q− 2εI=

=

 2βk1 + 4ε (2εk1 − k2)− 2
(
β + 4ε2

)
α1 + 4εα2 − 2ε F

k2 − 2εk1 −
(
β + 4ε2

)
+ 2εα1 − α2 2ε


=

 2βk1 −
(
β + 4ε2

)
(4ε+ 2α1) + 4εα2 − 2ε F

2εα1 − α2 2ε


being positive definite for every value of (t,X, x̂). Thus,

V̇ = −φ′1 (σ)χTQ (t,X, x̂)χ

≤ −2εφ′1 (σ)χTχ = −2ε

(
1

2 |σ| 12
+ k3

)
χTχ .

By applying Rayleigh-Ritz inequality λmin {P} |χ|2 ≤ χTPχ ≤ λmax {P} |χ|2, where |χ|2 =

χ2
1 + χ2

2 = |σ|+ 2k3 |σ|
3
2 + k2

3σ
2 + z2 is the Euclidean norm of χ, and

|χ1| ≤ |χ| ≤
V

1
2 (σ, z)

λ
1
2
min {P}

,

we can conclude that

V̇ ≤ −γ1V
1
2 (σ, z)− γ2V (σ, z) ,

γ1 =
ελ

1
2
min {P}

λmax {P}
, γ2 =

2εk3

λmax {P}
. (164)

Note that the trajectories of the STA cannot stay on the set S = {(σ, z) ∈ R2 | σ = 0}.
This means that V (σ, z) is a continuously decreasing function and using the generalized

Lyapunov’s theorem in [96, Proposition 14.1, p. 205] for differential inclusions we can

conclude that the equilibrium point (σ, z) = 0 is reached in finite time from every initial

condition. The key property that allows our conclusion is that [96, Proposition 14.1, p.

205] requires only continuity and not differentiability of the Lyapunov function candidate.

Since the solution of the differential equation

v̇ = −γ1v
1
2 − γ2v , v(T3) = v0 ≥ 0
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is given by

v(t) = e−γ2(t−T3)

[
v

1
2
0 +

γ1

γ2

(
1− e γ22 (t−T3)

)]2

,

where T3 > max{T1,T2}. Invoking the comparison principle, it follows that V (t) ≤ v(t)

and, consequently, (σ (t) , z (t)) converges to zero in finite time and reaches that value at

most after a finite time given by

T = T3 +
2

γ2

ln

(
γ2

γ1

V
1
2 (σ(T3), z(T3)) + 1

)
. (165)

– STEP 4 – Exponential convergence of the complete error system

From the Lyapunov analysis developed above, the existence of the ideal sliding mode

σ̂(t) ≡ σ(t) ≡ 0 in finite time could be demonstrated. Since σ is the relative degree

one output for the original closed-loop error system (120) with state Xe, it is possible to

rewrite it into the normal form [80] such that the states of the transformed error system

X̄e := [ηTe σ]T are ISS with respect to σ, for a particular exponential class-KL function,

where σ is treated as the “input”of the ηe–dynamics of this transformed system obtained

from the linear similarity transformation Xe = TX̄e. Thus, Xe and e = H0Xe tend

exponentially to zero as well as the state ζ of the differentiator, which is also driven by e.

This completes the proof of the theorem. �

The main challenge in the stability analysis is to guarantee that the closed-loop

system signals cannot escape in finite time, without invoking uniform boundedness of the

signals (and disturbances) as is usually done in SMC literature. Note that our nonlinear

disturbances are state dependent, and the state cannot be uniformly bounded by constants

over all the stability domain, otherwise only local stability could be obtained or the fixed

upper bounds would become unnecessarily large with quite conservative constants (which

would also compromise the controller performance in practice).

Corollary 2 (Stabilization for Multi-Output Systems). Consider the following perturbed

minimum-phase linear system

ẋ = Ax+B[u+ d(x, t)] , y = Cx , (166)

where A, B, C are constant matrices of appropriate dimensions, x ∈ Rn is the unmeasured
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state vector, u ∈ R is the control input, y ∈ Rm is the measured output vector and d(x, t)

is an absolutely continuous disturbance satisfying (A1). Assume that (166) is in some

particular canonical form such that the state vector can be written as x =: [xT1 ξT ]T ,

where x1 ∈ Rn−m−q and the partition ξ = [yT ẏT ]T ∈ Rm+q contains the measured portion

of the state (y ∈ Rm) and all of its needed derivatives (ẏ ∈ Rq). Under the mentioned

conditions, there exist a relative degree one variable σ = Sξ for the system (166) and a

linear transformation x̄ = T̄ x, with x̄ := [ηT σ]T , such that (166) can be put into the form

η̇ = A11η + A12σ , (167)

σ̇ = A21η + A22σ +Kp[u+ d̄(η, σ, t)] , (168)

where A11 is Hurwitz and d̄(η, σ, t) also continues satisfying (A1). If the control law of

Theorem 3 is applied to (167)–(168), or (166), with σ̂ = Sξ̂, the matrix S being construc-

ted using the Ackermann-Utkin formula [97] and ξ̂ being the estimate for ξ provided by

the HOSM differentiator with dynamic gains in (130), we can guarantee that the sliding

surface σ̂ = σ = 0 will be reached in finite time. Moreover, from the ISS property of

(167), the state η tends to zero exponentially as σ = 0. Thus, by applying the inverse

transformation x = T̄−1x̄, one can conclude at least exponential convergence to zero for

the original state vector x of (166). y

Summarizing, Theorem 3 and Corollary 2 propose non local methodologies for

tracking and stabilization using only output or partial-state feedback, and leading to

an absolutely continuous control signal provided by a scalar or multivariable VGSTA

controller. Such strategy ensures establishment of the sliding motion σ̂ = 0, with σ̂ defined

in (148). The continuity of the control signal can substantially reduce the chattering in

comparison with the discontinuous first order SMC [54], as illustrated in the following

academic example and experimental tests.
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3.5 Simulation Example

Consider the following perturbed linear system in normal form (102)–(104) with

relative degree two (ρ = 2) and second-order internal dynamics:

η̇1 =− η1 + ξ1 ,

η̇2 =− η2 + η1 ,

ξ̇1 =ξ2 ,

ξ̇2 =− ξ2 +
1

6
ξ1 +

1

6
sin (η1 + η2) + 2 cos (t) + u ,

y =ξ1 ,

where x = [ηT , ξT ]T ∈ R4, being the η and ξ the internal and external dynamics, respec-

tively. The system is unstable in open-loop. The control aim is the trajectory tracking of

ym = 1
(s+1)2

r, with

r(t) =

sin (t) , t ≤ 20

0 , t > 20 .

(169)

From (105), the nonlinear disturbance can be written as d(x, t) = −ξ2+1
6
ξ1+1

6
sin (η1 + η2)+

2 cos (t). The parameters kx = 7/6 and kd = 13/6 are chosen to satisfy the norm bound

in (A1). Choosing the ideal sliding variable as σ = ė+ e, we have:

σ̇ =
1

6
y +

1

6
sin (η1 + η2) + 2 cos (t) + ẏm + ym − r + u . (170)

which is estimated by σ̂ = ζ1 + e using a first order robust differentiator (130) with ρ = 2.

In this case, g1(X, σ, t) = 0, g2(X, t) = 1
6
y + 1

6
sin (η1 + η2) + 2 cos (t) + ẏm + ym − r and

d
dt
g2(X, t) = 1

6
ξ2 + 1

6
cos (η1 + η2) [y − η2]− 2 sin (t)− ym− ẏm + r− ṙ. Thus, the controller

(149) is implemented with k1(x̂, t) and k2(x̂, t) using %1(x̂, t) = 0 and %2(x̂, t) = |x̂|+ 4 +

2|ym| + 2|ẏm| + 2|r| + 2|ṙ|. The other controller gains were: k3 = 1, ε = 0.25, δ = 0.01,

and β = 7. The following I/O filters were used ωu = 1
(s+5)3

u, ωy = 1
(s+5)3

y. For the norm

observer, the parameters were selected as: γx = 0.8, kd = 13/6, c1 = 0.05, c2 = 1.4. The

initial conditions were chosen as η1(0) = −0.5 , η2(0) = 1 , ξ1(0) = 1 , ξ2(0) = 0.5. Since

e = y − ym, the upper bound for ë is computed as L(x̂, t) = 7/6|x̂|+ |u|+ 13/6 + |ÿm(t)|,
where |ÿm(t)| = | − 2ẏm − ym + r| and the signals ym , ẏm can be implemented from the
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state-space representation of the reference model.

The Euler integration method with fixed integration step of 10−5 s was used for the

simulations. The results obtained for the proposed VGSTA are shown in Figs. Figure 7(a)

to Figure 7(d). In Figure 7(c), it can be seen how, after a finite time, the norm observer

state x̂ overcomes the actual value of the x-norm and the upper bound L(x̂, t) for |ë(t)|
applied to the differentiator (130) is valid as well – see Figure 7(b). The successful achie-

vement of exact tracking despite disturbances is shown in Figure 7(a) using a continuous

control signal (Figure 7(d)). In Figure 7(e), the same tracking objective is pursued and

achieved by means of an output-feedback first order sliding mode controller, as proposed

in [54]. Nevertheless, the drawbacks of larger and discontinuous control signal appear, see

Figure 7(f).
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(f) Discontinuous control signal for first
order SMC [54].

Figure 7 – Simulation Results

3.6 Application Example

3.6.1 Model Description

To illustrate the application of our output-feedback VGSTA using the proposed

adaptive HOSM differentiator, let us consider a seesaw experiment illustrated in Figure 8.

The seesaw is free to rotate about the pivot in the center and the objective is to position
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the cart on the track to balance the system. One possible real-world application of this

system is the roll control of an airplane [98].

In this example, the output signals are the cart position p(t) and the seesaw’s tilt

angle θ(t). The cart is driven by a DC motor which the armature voltage u(t) is the

only control signal. The system parameters are: constant motor torque Km = 0.00767

V/(rad/sec), armature resistance Ra = 2.6 Ω, internal gear ratio Kg = 3.7 : 1, motor gear

radius r = 0.635 cm, cart mass m = 0.455 Kg, seesaw mass M = 3.3 Kg, seesaw inertia

JM = 0.42 Kgm2, center of gravity c = 5.8 cm and height of the track h = 14 cm.

Figure 8 – Seesaw module and linear servo base unit of Quanser Consulting Inc.

From Figure 9, the cart position is described by the coordinate pair (xm, ym) =

(h sin (θ)+p cos (θ) , h cos (θ)−p sin (θ)) and the gravity center of the seesaw is in (xM , yM) =

(c sin (θ) , c cos (θ)). By considering kinetic energy Ek = m
2

(√
ẋ2
m + ẏ2

m

)2

+ JM
2
θ̇2 and po-

tential energy Ep = Mg yM + mg ym, the Lagrange function is given by L = Ek − Ep.
Taking into account the Lagrangian mechanics, one can obtain the dynamic equations

which govern the system by computing

∂

∂t

(
∂L

∂q̇

)
− ∂L

∂q
= Qq ,

where q is a generalized coordinate and Qq is the sum of nonconservatives forces that act

in the q axis. In the example, q = {p, θ} with Qp = F − bmṗ and Qθ = −bM θ̇, where F

is the force that acts in the cart through the DC motor, bm and bM are viscous frictions

related to the cart and seesaw, respectively. The modeling of the electrical phenomena

together with the equations of the mechanical part, derived by Lagrange approach, allow

us to describe the system by a complete state-space representation. The state vector is

assigned as x := [p θ ṗ θ̇]T , so that the complex nonlinear system ẋ = f (x, u) representing
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the set formed by the DC motor–cart–seesaw is simply

ẋ1 = x3 , (171)

ẋ2 = x4 , (172)

ẋ3 =
2mhx1x3x4 −Mgch sin (x2)−mghx1 cos (x2)

JM +mx2
1

+
mh2x1x

2
4 − h2bmx3 + hbMx4

JM +mx2
1

+ x1x
2
4 + g sin (x2)

− (mh2 + JM +mx2
1)

m (JM +mx2
1)

(
KmKg

r

)2
1

Ra

x3

− bm
m
x3 +

(mh2 + JM +mx2
1)

m (JM +mx2
1)

KmKg

rRa

u , (173)

ẋ4 =
−2mx1x3x4 +Mgc sin (x2) +mgx1 cos (x2)

JM +mx2
1

+
−mhx1x

2
4 + hbmx3 − bMx4

JM +mx2
1

+
h

JM +mx2
1

(
KmKg

r

)2
1

Ra

x3 −
h

JM +mx2
1

KmKg

rRa

u , (174)

y = [x1 x2]T . (175)

There is no problem in considering a simplified (linear) model of the plant when a

robust control strategy is implemented. Essentially in practice, this is exactly the main

reason to choose a sliding mode controller robust to unmodelled dynamics, parametric

uncertainties and nonlinear disturbances rather than a linear control, which is not robust

in this general sense. In order to facilitate the control design for the local stabilization

problem, it is more attractive to appreciate the linearized version of the nonlinear system

described by (171)–(174) in the form (105), such that one can write

ẋ (t) = Ax (t) +Bu (t) ,

y (t) = Cx (t) ,

where A = ∂f(x, u)/∂x and B = ∂f(x, u)/∂u are the Jacobian matrices in the equili-

brium. Therefore, the linearization of the nonlinear system around x = 0 yields:
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Figure 9 – Diagram of the seesaw-cart scheme.

A =


0 0 1 0
0 0 0 1

−mgh
JM

(JM−Mhc)g
JM

−(mr2Rah2bm+bmr2RaJM+K2
mK

2
g(JM+mh2))

mr2RaJM

bMh
JM

mg
JM

Mgc
JM

r2Rabmh+K2
mK

2
gh

r2RaJM
− bM
JM

 , (176)

B =


0
0

KmKg(JM+mh2)
mrRaJM

−KmKgh

rRaJM

 , C =

[
1 0 0 0
0 1 0 0

]
. (177)

Numerically, for bm = 0 and bM = 0, it can be noted that

A =


0 0 1 0

0 0 0 1

−1.4495 9.2002 −17.2327 0

10.3538 4.3554 2.4947 0

 , B =


0

0

3.8559

−0.5582

 .

The linear approximation has output signals y1 = x1 = p and y2 = x2 = θ, it is con-

trollable, observable and has eigenvalues λi ∈ {2.6854,−1.4153 ± j0.4587,−17.0875},
i = 1, . . . , 4.
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3.6.2 Control Design

For designing the sliding variable σ it is employed the Ackermann-Utkin formula

[97], such that the closed-loop eigenvalues are assigned as λ1,2 = −2± j2, λ3 = −8.5 and

λ4 = −11. According to Corollary 2, by driving σ to zero then the state vector x goes to

zero. Thus, it is obtained the ideal sliding variable

σ = 54.9063x1 + 52.5038x2 + 4.2986x3 + 18.4658x4 ,

that can be estimated by

σ̂ = 54.9063x1 + 52.5038x2 + 4.2986ζp1 + 18.4658ζθ1 , (178)

where ζp1 and ζθ1 are the state variables of two exact differentiators in the form (130), with

ρ = 2, which estimate x3 = ṗ and x4 = θ̇, respectively.

A state-norm observer x̂3 is applied to estimate an upper bound for the norm of the

unmeasurable state variable x3 by using only known upper/lower bounds for the system

parameters and available signals. The norm observer applied here is given by

˙̂x3 = −15x̂3 + 1.5 |x1|+ 10 |x2|+ 4 |u| . (179)

This approach guarantees a less conservative estimate for the dynamic gains L(x̂, t) since

it is possible to construct a norm bound for ẋ3 and ẋ4 to be used in the exact differentiators

taking into account the state vector upper bound

x̂ := [x1 x2 x̂3]T .

Using the output signals x1, x2 and the norm observer variable x̂3, the gains of the

differentiators are given by

Lp (x̂, t) = 2 |x1|+ 10 |x2|+ 20 |x̂3|+ 4 |u| , (180)

Lθ (x̂, t) = 11 |x1|+ 5 |x2|+ 3 |x̂3|+ |u| . (181)

Therefore, the exact differentiators (182)–(185) can be implemented and (178) be obtai-
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ned:

ζ̇p0 = vp0 = −5Lp (x̂, t)
1
2 |ζp0 − y1|

1
2 sgn (ζp0 − y1) + ζp1 , (182)

ζ̇p1 = −3Lp (x̂, t) sgn (ζp1 − vp0) , (183)

ζ̇θ0 = vθ0 = −5Lθ (x̂, t)
1
2

∣∣ζθ0 − y2

∣∣ 12 sgn
(
ζθ0 − y2

)
+ ζθ1 , (184)

ζ̇θ1 = −3Lθ (x̂, t) sgn
(
ζθ1 − vθ0

)
. (185)

3.6.3 Experimental Results

In this application example, we have considered d(x, t) = 0 in (105) and the con-

troller parameters were chosen simply as %1(x̂, t) = 0, %2(x̂, t) = 0, k3 = 1, δ = 0.01, β = 5,

and ε = 1, for the purpose of local stabilization of the linearized model in (176)–(177).

In what follows, simulations and experimental results of balancing control using

the proposed output-feedback VGSTA for the seesaw are presented in the right column of

Figures 4, 5 and 6. The L gains of differentiators computed based on the norm observer

signal allow the automatic adjustment of their amplitudes when demanded. Thereby the

control action in closed-loop system, such dynamic gains Lp and Lθ tend to decrease as

the norm observer variable x̂3 vanishes, as shown in Figure 11(d), Figure 11(f), and Figure

10(f), respectively. The VGSTA has a smooth control action which decays as long as the

closed-loop system is stabilized, see Figure 10(h). Its performance can be evaluated from

Figure 10(b), Figure 10(d), Figure 12(b) and Figure 12(d), where x1 = p and x2 = θ

are the measured signals whereas ζp1 and ζθ1 are constructed by means of the proposed

variable-gain differentiators, to overcome the lack of the state variables x3 and x4.

The continuous control signal u is able to guarantee the convergence of sliding

variable σ̂ in Figure 11(b) to a neighborhood of zero in finite time in spite of the clear

adverse effects provoked by measurement noise, unmodeled dynamics, switching delays

and numerical discretization with lower sampling frequency (integration step of 10−3)

noted in the collected signals.

The left column of Figures 4, 5 and 6 also presents the experiments for classical

FOSMC so that a more clear comparison can be portrayed with the proposed generaliza-

tion of VGSTA. From this plots it is possible to realize the advantages achieved by our
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output-feedback VGSTA in terms of smaller residual sets in the stabilization error and

considerable reduction of switching amplitude and frequency of the control signal when

compared to FOSMC. Moreover, in [94] and [99], a detailed and fair study is performed

highlighting the conditions where one strategy is potentially better than the other.

We carried out experimental comparisons of the proposed output-feedback genera-

lization for VGSTA only with the classical FOSMC. However, we suggest to the readers

the publication [100] for a wider discussion about such various SMC controllers available

in the literature for arbitrary order systems. There, the authors have focused the dis-

cussion on: (a) first-order sliding mode control, (b) non-singular terminal sliding modes,

(c) second-order sliding mode (SOSM) algorithms (twisting and super-twisting) as well

as (d) quasi-continuous HOSM finite-time controllers.

As a general rule, the discontinuities in control lead to chattering – an unacceptable

phenomenon in some applications. The major advantage of VGSTA when compared with

other nonlinear sliding surface based controllers like Twisting Algorithm, Non-Singular

Terminal, Nested SMC and Quasi-Continuous SMC is to ensure a continuous control

signal. Despite the chapter contribution focus on VGSTA generalization using variable-

gains based HOSM differentiators, it can be also extended to this class of sliding mode

controllers. At this point the reader could argument that a possible solution for control

signal discontinuity would be evident: the control signal being generated by the output of

an auxiliary integrator with a discontinuous function of the state and time derivative of σ

as an output. Of course, this modification remains in the framework of the conventional

sliding mode control, but applies an extra artificial derivative of the signal σ which is not

needed for STA or VGSTA.
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(f) VGSTA: Norm observer x̂.
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(h) VGSTA: Control signal u.

Figure 10 – Experimental Results: First-Order Sliding Mode Control (FOSMC) × Vari-
able Gain Super-Twisting Algorithm (VGSTA).
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(f) VGSTA: Gain of the exact differen-
tiator Lθ.

Figure 11 – Experimental Results: First-Order Sliding Mode Control (FOSMC) × Vari-
able Gain Super-Twisting Algorithm (VGSTA).
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Figure 12 – Experimental Results: First-Order Sliding Mode Control (FOSMC) × Vari-
able Gain Super-Twisting Algorithm (VGSTA).
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4 OTHER SLIDING MODES CONTROLLERS

This chapter develops a higher-order sliding mode (HOSM) based global differenti-

ator with adaptive gains to address the tracking control problem using only input-output

information of a wider class of nonlinear systems with disturbances and parametric un-

certainties. The complete state of the plant is assumed unmeasured so that a norm state

estimator is constructed to norm bound the state-dependent disturbances and dynami-

cally update the gains of the proposed differentiator. Stability properties and robust

exact tracking can be achieved when the proposed adaptive HOSM based differentiator

is applied to output-feedback purposes. Numerical simulations are presented for different

sliding mode control designs, such as: (a) first-order sliding mode control, (b) terminal

sliding modes, (c) second order sliding mode algorithms (twisting and super-twisting), (d)

nested sliding mode control as well as (e) quasi-continuous HOSM finite-time controllers.

4.1 Problem Formulation

Consider an uncertain nonlinear plant described by:

ẋ = Apx+Bp[u+ d(x, t)] + φ(t) , y = Hpx , (186)

where x ∈ Rn is the state, u ∈ R is the input, y ∈ R is the output, d(x, t) ∈ R is a

state dependent uncertain disturbance and φ(t) is a time-varying uncertain unmatched

external disturbance. The term “unmatched” refers to φ(t) not contained in the range

space of Bp, otherwise φ(t) could be directly incorporated into the “matched” disturbance

d(x, t). The uncertain matrices Ap, Bp and Hp belong to some compact set, such that the

necessary uncertainty bounds to be defined later are available for design. The following

assumptions are made in the chapter:

(A1) G(s) = Hp(sI−Ap)−1Bp is minimum phase.

(A2) The pair (Ap, Bp) is controllable and observable.

(A3) The transfer function G(s) has a known relative degree ρ and order n. The

high frequency gain (HFG) Kp ∈R satisfies Kp = lims→∞ s
ρG(s) = HpA

ρ−1
p Bp . Without

loss of generality, we assume that Kp > 0.



97

(A4) The input disturbance d(x, t) is assumed to be uncertain, locally integrable

and norm bounded by |d(x, t)| ≤ kx|x| + kd, ∀x, t, where kx, kd ≥ 0 are known scalars.

The unmatched disturbance φ(t) is assumed sufficiently smooth. Moreover, there exists

a known constant kφ≥0 such that |φ(i)(t)| ≤ kφ, ∀i = 0, . . . , ρ.

Assumptions (A1)–(A3) are usual in model reference adaptive control (MRAC)

[16]. From (A4), we note that the relative degree of (186) depends only on the linear

part, being independent of the disturbances d and φ. In addition, the class of nonli-

near disturbances are more general than those considered in [2, 4, 5, 14] and represents a

challenge in the context of global output-feedback SMC.

Let the reference signal ym(t) ∈ R be generated by the following reference model

ym = Wm(s) r , Wm(s)=(s+γm)−1L−1
m (s) , γm>0, (187)

where r(t) ∈ R is an arbitrary uniformly bounded piecewise continuous reference signal

and

Lm(s)=s(ρ−1) + lρ−2s
(ρ−2) + · · ·+ l1s+ l0 , (188)

with Lm(s) being a Hurwitz polynomial. The transfer function matrix Wm(s) has the

same relative degree as G(s) and its HFG is the unity. The main objective is to find a

control law u such that the output error

e(t) := y(t)− ym(t) (189)

is steered to zero, for arbitrary initial conditions.

The MRAC parametrization [16] using I/O filters is initially applied to obtain the

ideal matching control [16] denoted by u∗ and derive the dynamic error equations for the

error system. However, we are not trying to recover any particular property from MRAC.

In this sense, when the plant is known and d(t) ≡ 0, φ(t)≡0, a control law which achieves

the matching between the closed-loop transfer function matrix and Wm(s) is

u∗ = θ∗
T

ω , θ∗ =
[
θ∗

T

1 θ∗
T

2 θ∗3 θ
∗
4

]T
, (190)

where θ∗ is the parameter vector with θ∗1, θ
∗
2∈R(n−1) and θ∗3, θ

∗
4∈R. The regressor vector
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ω = [ωTu ωTy y r]T , wu, wy ∈ R(n−1) is obtained from I/O state variable filters given by:

ω̇u = Φωu + Γu , ω̇y = Φωy + Γy , (191)

where Φ ∈ R(n−1)×(n−1) is Hurwitz and Γ ∈ R(n−1) is chosen such that the pair (Φ, Γ)

is controllable. The matching conditions require that θ∗4 = K−1
p . Define the augmented

state vector

X = [xT , ωTu , ω
T
y ]T , (192)

with dynamics described by Ẋ=A0X+B0u+B′0d+Bφφ, and output y=H0X, where

A0 =


Ap 0 0

0 Φ 0

(ΓHp) 0 Φ

 , B0 =


Bp

Γ

0

 , B′0 =


Bp

0

0

 , (193)

BT
φ =

[
I 0 0

]
, H0 =

[
Hp 0 0

]
. (194)

Then, adding and subtracting B0θ
∗Tω and noting that there exist matrices Ω1 and Ω2

such that [16]

ω=Ω1X+Ω2r , (195)

one has

Ẋ=AcX +BcKp[θ
∗
4r + u− u∗] +B′0d+Bφφ , y=H0X , (196)

where Ac = A0 + B0θ
∗TΩ1 and Bc = B0θ

∗
4. Notice that (Ac, Bc, H0) is a nonminimal

realization of Wm(s). For analysis purposes, the reference model can be described by

Ẋm=AcXm +BcKp[θ
∗
4r − df ] +B′0d+Bφφ, ym=H0Xm , (197)

where the equivalent input disturbance df =Wd(s)d+Wφ(s)φ with

Wd(s) = [Wm(s)Kp]
−1H0 (sI−Ac)−1B′0 , (198)

Wφ(s) = [Wm(s)Kp]
−1H0 (sI − Ac)−1Bφ . (199)

Note that Wd(s) in (198) is a stable and proper transfer function and Wφ(s) in (199)

is a stable and possibly improper transfer function, so that derivatives of φ(t) may ap-
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pear in the input channel. Now, remind that [Wm(s)Kp]
−1 = K̄ρs

ρ+K̄ρ−1s
ρ−1 +. . .+K̄0,

where K̄i ∈R, i= 0, . . . , ρ, are constants. By using the Markov parameters to represent

H0 (sI − Ac)−1Bφ=
H0Bφ
s

+
H0AcBφ

s2
+
H0A2

cBφ
s3

+. . . , the term df (t) can be rewritten as

df := Kρ−1φ
(ρ−1) + · · ·+K1φ̇+Wp(s) ∗ φ+Wd(s) ∗ d , (200)

where ∗ denotes the convolution operator, Kj∈R1×n is given by

Kj =

ρ∑
i=j+1

K̄iH0A
i−j−1
c Bφ , j = 1, . . . , ρ− 1 , (201)

and Wp(s) is a stable and proper transfer function matrix

Wp(s) =

ρ∑
i=1

K̄iH0A
i−1
c Bφ +

ρ∑
i=0

K̄iH0A
i
c(sI − Ac)−1Bφ . (202)

Thus, the error dynamics with state

Xe := X −Xm (203)

can be written in the the state-space representation by

Ẋe = AcXe +BcKp[u− θ∗
T

ω + df ] , (204)

e = H0 Xe , (205)

or in the I/O form as: e = Wm(s)Kp

[
u− θ∗Tω + df

]
. The importance of considering

the augmented dynamics (196) with state X including the I/O filters (191) is not only to

derive the full-error equation (204), but to create an output-feedback framework which

allow us to derive norm bounds for the unmeasured state of a possible unstable plant

(186) and for the equivalent disturbance df (x, t), as discussed in the next section. As a

bonus, we use (204) in the proof of the main theorem to state global stability by means of

input-to-state properties of the closed-loop system, without appealing to Lyapunov based

analysis.
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4.2 State-Norm Observer

Considering Assumption (A4) and applying [8, Lemma 3] to (196), it is possible to

find k∗x > 0 such that, for kx ∈ [0, k∗x], a norm bound for X and x can be obtained through

stable first order approximation filters (FOAFs) (see details in [8]). Thus, one has

|x(t)| , |X(t)| ≤ |x̂(t)|+ π̂(t) , (206)

x̂(t) :=
1

s+ λx
[c1(kd + kφ) + c2|ω(t)|] , (207)

with c1, c2, λx > 0 being appropriate constants that can be computed by the optimization

methods mentioned in [8]. In this sense, (206)–(207) state that the norm observer esti-

mate x̂(t) provides a valid norm bound for the unmeasured state x of the uncertain and

disturbed plant, i.e., |x| ≤ |x̂| except for exponentially decaying terms due to the system

initial conditions, denoted here by π̂(t).

Since we assume sufficient differentiability for φ and uniform boundedness for its

time derivatives, one can find a constant k̄φ > 0 such that |K1φ̇+ . . .+Kρ−1φ
(ρ−1)| ≤ k̄φ

and |df | ≤ k̄φ + |Wp(s) ∗ φ| + |Wd(s) ∗ d|. Moreover, from (A4) and (207), one has

|d(x, t)| ≤ kxx̂(t) + kd, modulo π̂ term, and one can write |df | ≤ d̂f + π̂f , where π̂f is an

exponentially decreasing term,

d̂f (t) := k̄φ +
cf

s+ λf
[kφ + kxx̂(t) + kd] , (208)

and
cf

s+λf
is a FOAF designed for Wd(s) and Wp(s), with adequate positive constants cf

and λf . At the price of some conservatism, we can simplify the FOAF design by choosing

cf sufficiently large and λf sufficiently small.

4.3 Global Differentiator with Adaptive Gains

In what follows, a HOSM differentiator with coefficients being adapted using the

estimate for the norm of the state x provided in (206) is proposed to achieve global exact

estimation, i.e., exact differentiation of signals with any initial conditions and unbounded

higher derivatives.

Under the assumptions (A1)–(A4), the unmatched time-varying disturbance φ(t)

cannot change the relative degree of the unperturbed linear system (186), thus it is easy
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to show that the nonlinear system (186) can be transformed into the normal form [80]:

η̇ = A0η + B0y , (209)

ξ̇ = Aρξ + BρKp[u+ de(x, t)] , y = Cρξ , (210)

where zT = [ηT ξT ] ∈ Rn with η ∈ R(n−ρ) being referred to the state of the inverse or

zero dynamics and ξ = [y ẏ . . . y(ρ−1)]T the state of the external dynamics. The triple

(Aρ, Bρ, Cρ) is in the Brunovsky’s controller form [80] and A0 is Hurwitz. The equivalent

input disturbance de(x, t) = d(x, t) +K−1
p

(
HpA

ρ
px+

∑ρ−1
i=0 HpA

ρ−1−i
p φ(i)

)
is affinely norm

bounded by

|de(x, t)| ≤ κ1|x|+ κ2 , (211)

where κ2 > kd+K−1
p

∣∣∑ρ−1
i=0 HpA

ρ−1−i
p φ(i)

∣∣ and κ1 > kx+K−1
p

∣∣HpA
ρ
p

∣∣ are known constants.

We can conclude the following state-dependent upper bound for higher derivative (order

ρ) of the output signal

|y(ρ)| ≤ Kp [κ1|x|+ κ2 + |u|] . (212)

From (212) and (189), we can write

|e(ρ)(t)| ≤ L(x, t) = Kp [κ1|x|+ κ2 + |u|] + |y(ρ)
m (t)| . (213)

Now, assume that the control input satisfies

|u| = k%%(t) ≤ κ3||Xt||+ κ4 , (214)

for constants k% , κ3 , κ4 > 0 and an appropriate continuous modulation function %(t) ≥ 0,

to be defined later on. Then, applying (206), we can obtain the following upper bound

with the norm observer variable x̂(t) in (206)–(207):

|e(ρ)(t)| ≤ Kp [κ1|x̂|+ κ2 + %(t)] + |y(ρ)
m (t)| , (215)

modulo exponential decaying terms due to initial conditions, which take into account the

transient of the FOAF. By defining known positive constants k1, k2, k3 and km satisfying
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km ≥ |y(ρ)
m (t)|, k1 ≥ Kpκ1, k2 ≥ Kpκ2 + km and k3 ≥ Kp, we can define

L(x̂, t) := k1|x̂|+ k2 + k3%(t) , (216)

and state the following upper bound constructed only with measurable signals

|e(ρ)(t)| ≤ L(x̂, t) , ∀t ≥ T , (217)

for some finite time T > 0.

In light of (216)–(217), we can introduce the following HOSM differentiator of

order p = ρ− 1 with dynamic gains for the output error e ∈ R:

ζ̇0 =v0 = −λ0L(x̂, t)
1
p+1 |ζ0 − e(t)|

p
p+1 sgn(ζ0 − e(t)) + ζ1,

...

ζ̇i=vi=−λiL(x̂, t)
1

p−i+1 |ζi−vi−1|
p−i
p−i+1 sgn(ζi−vi−1)+ζi+1,

...

ζ̇p=−λpL(x̂, t)sgn(ζp − vp−1) .

(218)

Sufficient conditions for finite-convergence of HOSM differentiators with variable gains

were already formulated in [11]. The main difference is that there the authors assume the

measurement of the state vector. In the proposed differentiator (218), the global upper

bound L(x̂, t) must be absolutely continuous and its logarithmic derivative L̇/L must be

bounded, that is, |L̇/L| ≤M , where M > 0 is some constant. It implies that L(x̂, t) can

grow at most exponentially.

According to the linear growth condition assumed in (A4) for the system non-

linearities and the regularity condition [57] assumed in (214) for the control signal, any

finite-escape is precluded and only exponentially growing signals are possible in the closed-

loop system, as it will be show in the proof of the main theorem. Thus, if the parameters

λi are properly recursively chosen3, the following equalities

ζ0 = e(t) , ζi = e(i)(t) , i = 1 , . . . , p , (219)

3In particular, the following choice is valid for p ≤ 3: λ0 = 5, λ1 = 3, λ2 = 1.5, λ3 = 1.1. For more
details, see [17].
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are established in finite time [17], but with the theoretical advantage of being globally

valid (for any initial conditions) since it is not required a priori that the signal e(ρ)(t) be

uniformly bounded, as assumed in the HOSM differentiator with fixed gains [17].

4.4 Output-feedback via Adaptive HOSM Differentiator

The next step is to proposed output-feedback control laws which satisfy (214) such

that the global differentiator above can be indeed constructed and applied. Then, the

proof of convergence for the tracking error e(t) with our output-feedback controller based

on the estimate state of the HOSM differentiator is straightforward once the convergence

of the differentiator (218) is already guaranteed and the separation principle is always

fulfilled [11,92].

(a) Modulation function or control gain:

A common feature of the family of output-feedback controllers described in the

following is the use of a modulation function or control gain %(t)≥0 which dominates the

equivalent input disturbance in (204) so that:

%(t) ≥ | − θ∗Tω(t) + df (t)|+ δ , δ > 0 , (220)

where the constant δ can be arbitrarily small. Since Ap, Bp and Hp in (186) belong to

some known compact set, an upper bound θ̄ ≥ |θ∗| can be obtained. Thus, a possible

choice for the modulation function to satisfy (220) is given by

%(t) = θ̄|ω(t)|+ d̂f (t) + δ , (221)

with d̂f (t) defined in (208).

To show the modulation function %(t) in (221) satisfies inequality (214) we just

have to write |ω| ≤ κ5|X| + κ6 from (195), with κ5 , κ6 > 0 and considering that r(t) is

an uniformly bounded reference signal. Then, from the ISS relation of the filtered signals

in (207) and (208) with respect to ω, we conclude the norm bounds |d̂f | ≤ κa||Xt|| + κb

and |x̂| ≤ κc||Xt||+ κd, for appropriate constants κa , κb , κc , κd > 0.

(b) Ideal sliding variable:

The main idea of sliding mode control is to design the relative degree one sliding
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variable and such that, when the motion is restricted to the manifold σ = 0, the reduced-

order model has the required performance.

For higher relative degree plants, one could use simply the operator Lm(s) defined

in (188), to overcome the relative degree obstacle. The operator Lm(s) is such that

Lm(s)G(s) and Lm(s)Wm(s) have relative degree one. The ideal sliding variable σ =

Lm(s)e ∈ R is given by

σ = e(ρ−1) + · · ·+ l1ė+ l0e =

ρ−1∑
i=0

liH0A
i
cXe = H̄Xe , (222)

where the second equality is derived from Assumption (A3) and (204). Notice that

{Ac, Bc, H̄} is a nonminimal realization of Lm(s)Wm(s). From (187)–(188), one has

σ = Lm(s)Wm(s)Kp

[
u− θ∗Tω + df

]
=

Kp

s+ γm

[
u− θ∗Tω + df

]
. (223)

More general (nonlinear) combinations of the variables e(ρ−1) , . . . , ė and e, rather

than the simple linear combination given in (222) could be envisaged. As an advan-

tage, finite-time convergence for the tracking error e(t) would be guaranteed instead of

exponential convergence only, as will be discussed in the next sections.

Anyway, σ is not directly available to implement the control law. Thus, reminding

(219) and using the proposed adaptive HOSM differentiator, the following estimate for σ

can be obtained to replace (222):

σ̂ = ζρ−1 + · · ·+ l1ζ1 + l0ζ0 . (224)

(c) Numerical Simulation:

To show the wide range of global differentiators presented in this article, simulation

results are presented for distinct control designs. Such controllers are: first order sliding

mode, non-singular terminal sliding mode, twisting algorithm, super-twisting algorithm,

nested sliding mode and quasi-continuous sliding mode. For all simulations the follows
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perturbed plant is used,

ẋ1 = x2 ,

ẋ2 = −1.5x2 + x1 + u+ 0.5x
2/3
1 x

1/3
2 sin (t) ,

where the perturbation is represented by the term d (x, t) = 0.5x
2/3
1 x

1/3
2 sin (t) and the

output is given by

y = x1 .

The smooth reference signal is

r (t) = 0.25 sin (0.5t) + 0.8 sin (6t)

and it is nulled after t = 20 to show the dynamic differentiator gains behavior. For

tracking problem a reference model is employed, its transfer function is

ym =
0.5

s2 + 1.5s+ 0.5
r .

Furthermore, to build the regressor vector ω := [ωu ωy y r]
T , the I/O filtered signals are

obtained by

ω̇u = −2ωu + u ,

ω̇y = −2ωy + y .

The norm observer x̂ (t), obtained through regressor vector ω, provide an upper bound

to state norm |x| that allows the design of global differentiators based on dynamic gain

L(x̂, t), the major df (x̂, t) for the modulo of perturbation d(x, t) and the modulation

function % (t) employed in controllers. The norm observer (206), the disturbance norm

bound (208), the modulation function (221) and the differentiartor gain (216) are used

with parameters: λx = 0.1, c1 = 0.06, c2 = 0.2, kd = 1, kφ = 1, λf = 2, kx = 1, k̄φ = 1,

cf = 0.001, θ̄ = 3, δ = 0.001, k1 = 2, k2 = 0 and k3 = 3. The initial conditions are

x1(0) = 2, x2(0) = 1, ωu(0) = 0, ωy(0) = 0, ζ0(0) = 1 and ζ1(0) = 2.
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4.4.1 First Order Sliding Mode Control

If the first order SMC law was given by u = −%(t)sgn(σ), with modulation func-

tion %(t) in (221), then the closed-loop error system (204) would be uniformly globally

exponentially stable and the ideal sliding variable σ in (223) became identically zero after

some finite time, according to [84, Lemma 1].

From (195), (207) and (208), it is easy to show that the following control signal

u = −%(t)sgn(σ̂) , (225)

with sliding variable σ̂ in (224), satisfies inequality (214) for k% = 1. Thus, the global

differentiator with dynamic gains given in (218) can indeed be constructed and its state

exactly surrogates the time derivatives of the signal e(t) in the sliding variable σ̂ after

some finite time.
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|ë|
L(x̂, t)

(d) Dynamic differentiator gain.

Figure 13 – First order sliding mode - simulation results
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4.4.2 Terminal Sliding Mode Control

The Non-Singular Terminal Sliding Mode differs from standard sliding mode basi-

cally by two reasons. First, the sliding surface is as nonlinear function of state variables.

Second, while the asymptotically convergence is guaranteed when the closed loop systems

stay in standard sliding surface, its non-singular terminal version is able to do the state

reaches the origin in finite time. The controller presented here follows the steps given

by [101]. The nonlinear surface is

σ̂ = ζ0 +
1

2
ζ

5/3
1 , (226)

and the controller is

u = −
(

3ζ0 +
6

5
ζ

1/3
1 + % (t) sgn (σ̂)

)
. (227)
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Figure 14 – Non-singular terminal sliding mode - simulation results
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4.4.3 Twisting Algorithm

The first and simplest second order sliding mode (SOSM) algorithm is the so-called

“twisting algorithm (TA)” [51]. For a error system (204)–(205) with relative degree ρ = 2,

our global output-feedback version of the TA is given by:

u = −a(t)sgn(ζ1)− b(t)sgn(ζ0) , b(t) ≥ 2a(t) , (228)

where a(t) = %(t) in (221) is defined analogously to satisfy (220). The TA ensures the

finite-time exact convergence of both ζ0 = e and ζ1 = ė, i.e., there exists T > 0 such that

e(t) = ė(t) = 0, ∀t > T .
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Figure 15 – Twisting sliding mode - simulation results

4.4.4 Super-Twisting Algorithm

HOSM based control is effective for arbitrary relative degrees and it is well-known

that the chattering effect is significantly attenuated since the high-frequency switching

is hidden in the higher derivative of the sliding variable. The proposed global HOSM

differentiator (218) can be applied to provide the output-feedback generalization for all
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the existing HOSM control schemes, substituting the discontinuous control variable from

the first order SMC (225) by an absolutely continuous control, while preserving global

stability properties.

For instance, the proposed output-feedback version of the original state-feedback

“variable gain super-twisting algorithm (VGSTA)” [51] can be written as:

u = −k1φ1 (σ̂)− k2

∫ t

0

φ2 (σ̂) dt , k1, k2 > 0 , (229)

where x̂ is given in (207), σ̂ in (224) and

φ1 (σ̂) = |σ̂| 12 sgn (σ̂) + k3σ̂

φ2 (σ̂) = 1
2
sgn (σ̂) + 3

2
k3 |σ̂|

1
2 sgn (σ̂) + k2

3σ̂ , k3 > 0 .

The variable gains in (229) are selected as

k1 (x̂, t) = δ + 1
β

{
1
4ε

[2ε%1 + %2]2 + 2ε%2 + ε+ [2ε+ %1] (β + 4ε2)
}
,

k2 (x̂, t) = β + 4ε2 + 2εk1 (x̂, t) ,
(230)

where %1 (x̂, t) ≥ 0, %2 (x̂, t) ≥ 0 are known continuous functions and β > 0, ε > 0, δ > 0

are arbitrary positive constants. For more details, see [51]. The continuity of the control

(229) can substantially reduce the chattering level of the second-order VGSTA [51] in

practice.

4.4.5 Nested-Sliding Mode Control

The nested-sliding-mode controller are designed by using a recursive process of

finite time stabilization of sliding surface σ and its ρ − 1-derivatives. This controller is

based on a complicated switching motion. Let p ≥ ρ, i = 1, . . . , ρ − 1, β1, . . . , βρ−1 be

some positive numbers. Denote

N1,ρ = |σ|(ρ−1)/ρ , (231)

Ni,ρ =

(
|σ|p/ρ + |σ̇|p/(ρ−1) + . . .+

∣∣∣σ(i−1)
∣∣∣p/(ρ−i+1)

)(ρ−i)/p
, (232)

ψ0,r = sgn (σ) , (233)

Ψi,ρ = sgn
(
σ(i) + βiNi,ρΨi−1,ρ

)
. (234)
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Figure 16 – Super-Twisting sliding mode - simulation results

Ni,ρ and Ψi,ρ are ρ-sliding homogeneous functions of the weights ρ− i and 0 respectively,

Ni,ρ is also a positive-definite function of σ, σ̇, . . . , σ(i−1). Then the corresponding ρ-sliding

homogeneous controller is defined as u = −αΨρ−1,ρ

(
σ, σ̇, . . . , σ(i−1)

)
.

For simulation, the parameter α = 1, the sliding surface is chosen as σ̂ = ζ0, thus

˙̂σ = ζ1 and therefore the controller is given by

u = −% (t) sgn
(
ζ1 − |ζ0|1/2 sgn (ζ0)

)
(235)

4.4.6 Quasi-Continuous Algorithm

If the relative degree ρ > 1, HOSM controllers can be constructed using a recursion.

In [92], HOSM controllers were extended to include a variable gain and thus became non-

homogeneous. In this case, the proposed output-feedback controller takes the form

u = −αΦ(t, x̂)Ψρ−1,ρ (ζ0, ζ1, . . . , ζρ−1) , (236)
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Figure 17 – Nested sliding mode - simulation results

where α > 0 is an appropriate constant and the so-called “gain function” Φ(t, x̂) > 0

must satisfy (220), as was done before for %(t) in (221). The function Ψρ−1,ρ is a ρ-sliding

homogeneous controller given by:

ϕ0,ρ = ζ0 , N0,ρ = |ζ0| , Ψ0,ρ = ϕ0,ρ/N0,ρ , (237)

ϕi,ρ = ζi + βiN
(ρ−i)/(ρ−i+1)
i−1,ρ Ψi−1,ρ , (238)

Ni,ρ = |ζi|+ βiN
(ρ−i)/(ρ−i+1)
i−1,ρ , (239)

Ψi,ρ(·) = ϕi,ρ/Ni,ρ , i = 1, . . . , ρ− 1 . (240)

where |Ψρ−1,ρ| ≤ 1 and β1, . . . , βρ−1 > 0 are constants. As usual, the idea is to replace the

signals e, ė, . . . , e(ρ−1) by their estimates ζ0, ζ1, . . . , ζρ−1 and the state x by its norm bound

x̂, obtained with the global differentiator (218) and the norm observer (207), respectively.

For α > 0 and βi > 0 , i = 1, . . . , ρ−1, sufficiently large, the identity ζ0 ≡ e ≡ 0 is

globally achieved in finite-time.
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Figure 18 – Quasi-continuous sliding mode - simulation results
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5 GENERALIZED MODEL REFERENCE ADAPTIVE CONTROL

In this chapter, we combine a global differentiator based on higher-order sliding mo-

des (HOSM) and dynamic gains with classical model reference adaptive control (MRAC)

schemes to solve the problem of trajectory tracking via output feedback for uncertain

linear plants of arbitrary relative degree. The gains of the differentiator are adapted

through state-norm observers for the unmeasured state, whereas the control parametriza-

tion explores the input-output filters commonly used in MRAC design. Global asymptotic

stability and robust exact tracking are rigorously demonstrated. The obtained results are

easily extended to other adaptive laws using switching σ–modification or binary control

concepts associated with parameter projection. Simulations highlight the claimed proper-

ties as well as the remarkable simplicity of the proposed adaptive control system using

robust exact differentiators when compared to more involve alternatives found in standard

approaches. The theoretical results are also illustrated with an application to bilateral

teleoperation systems.

5.1 Problem Statement

Consider the following uncertain linear plant described by:

ẋ = Apx+Bpu , y = Hpx , (241)

where x ∈ Rn is the state, u ∈ R is the input and y ∈ R is the output. The uncertain

matrices Ap, Bp and Hp belong to some compact set, such that the necessary uncertainty

bounds to be defined later are available for design. The assumptions listed below are

made in the chapter:

(A1) G(s) = Hp(sI−Ap)−1Bp is minimum phase.

(A2) The pairs (Ap, Bp) and (Ap, Hp) are controllable and observable, respectively.

(A3) The transfer function G(s) has a known relative degree ρ and order n. The

high-frequency gain (HFG) Kp ∈R satisfies Kp = lims→∞ s
ρG(s) = HpA

ρ−1
p Bp . We just

assume the sign of Kp is known.

Assumptions (A1)–(A3) are usual in model reference adaptive control (MRAC)

[16].



114

Let the reference signal ym(t) ∈ R be generated by the following reference model

ym = Wm(s) r , Wm(s)=(s+γm)−1L−1
m (s) , γm>0, (242)

where r(t) ∈ R is an arbitrary uniformly bounded piecewise continuous reference signal

and

Lm(s)=s(ρ−1) + lρ−2s
(ρ−2) + · · ·+ l1s+ l0 , (243)

with Lm(s) being a Hurwitz polynomial. The transfer function matrix Wm(s) has the

same relative degree as G(s) and its HFG is the unity.

The main objective is to find a control law u such that the output error

e(t) := y(t)− ym(t) (244)

is steered to zero, for arbitrary initial conditions.

The MRAC parametrization [16] using I/O filters is initially applied to obtain the

ideal matching control [16] denoted by u∗ and derive the dynamic error equations for

the error system. In this sense, a control law which achieves the matching between the

closed-loop transfer function matrix and Wm(s) is given by

u∗ = θ∗
T

ω , θ∗ =
[
θ∗

T

1 θ∗
T

2 θ∗3 θ
∗
4

]T
, (245)

where θ∗ is the parameter vector with θ∗1, θ
∗
2∈R(n−1) and θ∗3, θ

∗
4∈R. The regressor vector

ω = [ωTu ωTy y r]T , wu, wy ∈ R(n−1) is obtained from I/O state variable filters given by:

ω̇u = Φωu + Γu , ω̇y = Φωy + Γy , (246)

where Φ ∈ R(n−1)×(n−1) is Hurwitz and Γ ∈ R(n−1) is chosen such that the pair (Φ, Γ)

is controllable. The matching conditions require that θ∗4 = K−1
p . Define the augmented

state vector

X = [xT , ωTu , ω
T
y ]T , (247)
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with dynamics described by Ẋ=A0X+B0u, and output y=H0X, where

A0 =


Ap 0 0

0 Φ 0

(ΓHp) 0 Φ

 , B0 =


Bp

Γ

0

 , (248)

H0 =
[
Hp 0 0

]
. (249)

Then, adding and subtractingB0θ
∗Tω and noting that there exist matrices Ω1 ∈ R(2n−2)×(3n−2)

and Ω2 ∈ R(2n−2) such that [16]

ω=Ω1X+Ω2r , (250)

one has

Ẋ=AcX +BcKp[θ
∗
4r + u− u∗] , y=H0X , (251)

where Ac = A0 + B0θ
∗TΩ1 and Bc = B0θ

∗
4. Notice that (Ac, Bc, H0) is a nonminimal

realization of Wm(s). For analysis purposes, the reference model can be described by

Ẋm=AcXm +BcKpθ
∗
4r , ym=H0Xm . (252)

Thus, the error dynamics with state

Xe := X −Xm (253)

can be written in the the state-space representation by

Ẋe = AcXe +BcKp[u− θ∗
T

ω] , (254)

e = H0 Xe , (255)

e = Wm(s)Kp

[
u− θ∗Tω

]
, (256)

where (256) is the I/O form of (254)–(255).

The importance of considering the augmented dynamics (251) with state X in-

cluding the I/O filters (246) is not only to derive the full-error equation (254), but to

create an output-feedback framework which allow us to derive norm bounds for the un-

measured state of a possible unstable plant (241), as discussed in the next section. As a
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bonus, we use (254) in the proof of the main theorem to state global stability by means

of input-to-state properties of the closed-loop system.

5.2 State-Norm Observer

Applying [8, Lemma 3] to (251), it is possible to find a norm bound for X and x

that can be obtained through stable first order approximation filters (FOAFs) (see details

in [8]). Thus, one has

|x(t)| , |X(t)| ≤ |x̂(t)|+ π̂(t) , (257)

x̂(t) :=
cx

s+ λx
|ω(t)| , (258)

with cx, λx > 0 being appropriate constants that can be computed by the optimization

methods mentioned in [8], such that, being {λi} the eigenvalues of Ac, the stability margin

of Ac is defined by λx := mini[−Re(λi)].

In this sense, inequality (257)–(258) establishes that the norm observer estimate

x̂(t) provides a valid norm bound for the unmeasured state x of the uncertain plant, i.e.,

|x| ≤ |x̂| except for exponentially decaying terms due to the system initial conditions,

denoted here by π̂(t). From (257), we still can conclude the following norm bound

|x(t)|, |X(t)| ≤ |x̂(t)|+ δ0 , ∀t ≥ T0 , (259)

valid after some finite time T0 > 0, for any arbitrarily small positive constant δ0 (inde-

pendent of initial conditions) since π̂(t) is an exponentially decreasing term.

5.3 Global Differentiator with Dynamic Gains

In what follows, a HOSM differentiator with coefficients being adapted using the

estimate for the norm of the state x provided in (257) is proposed to achieve global exact

estimation, i.e., exact differentiation of signals with any initial conditions and unbounded

higher derivatives.

It is possible to show that the nonlinear system (241) can be transformed into the
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normal form [80]:

η̇ = A0η + B0y , (260)

ξ̇ = Aρξ + BρKp[u+ de(x, t)] , y = Cρξ , (261)

where zT = [ηT ξT ] ∈ Rn with η ∈ R(n−ρ) being referred to the state of the inverse or

zero dynamics and ξ = [y ẏ . . . y(ρ−1)]T the state of the external dynamics. The triple

(Aρ, Bρ, Cρ) is in the Brunovsky’s controller form [80] and A0 is Hurwitz. The equivalent

input disturbance de(x, t) = K−1
p HpA

ρ
px is affinely norm bounded by

|de(x, t)| ≤ k0|x| , (262)

where k0 > |K−1
p |
∣∣HpA

ρ
p

∣∣ is a known constant. We can conclude the following state-

dependent upper bound for higher derivative (order ρ) of the output signal

|y(ρ)| ≤ |Kp| [k0|x|+ |u|] . (263)

From (263) and (244), we can write

|e(ρ)(t)| ≤ L(x, t) = |Kp| [k0|x|+ |u|] + |y(ρ)
m (t)| . (264)

By applying (257) to (264), we can obtain the following upper bound with the

norm observer variable x̂(t) in (257)–(259):

|e(ρ)(t)| ≤ |Kp| [k0(|x̂|+ δ0) + |u|] + |y(ρ)
m (t)| , (265)

modulo exponential decaying terms due to initial conditions, which take into account the

transient of the FOAF. By defining known positive constants k1, k2, k3 and km satisfying

km ≥ |y(ρ)
m (t)|, k1 ≥ |Kp|k0 and k2 ≥ |Kp|k0δ0 + km, we can define

L(x̂, t) := k1|x̂|+ k2 + |u| , (266)
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and state the following upper bound constructed only with measurable signals

|e(ρ)(t)| ≤ L(x̂, t) , ∀t ≥ T , (267)

for some finite time T > 0.

In light of (266)–(267), we can introduce the following HOSM differentiator based

on dynamic gains for the output error e ∈ R, with state ζ = [ζ0 . . . ζρ−1]T and order

p = ρ− 1:

ζ̇0 =v0 = −λ0L(x̂, t)
1
p+1 |ζ0 − e(t)|

p
p+1 sgn(ζ0 − e(t)) + ζ1,

...

ζ̇i=vi=−λiL(x̂, t)
1

p−i+1 |ζi−vi−1|
p−i
p−i+1 sgn(ζi−vi−1)+ζi+1,

...

ζ̇p=−λpL(x̂, t)sgn(ζp − vp−1) .

(268)

The dynamic gain of our differentiator must satisfy the same conditions for finite-

convergence given in [11,102]: the global upper bound L(x̂, t) must be absolutely continu-

ous with at least ultimate bounded logarithmic derivative (|L̇/L| ≤M , for some constant

M > 0). It implies that, after some finite time, L(x̂, t) can grow at most exponentially as

a result of |L̇| ≤ M |L|. Initially the variable gain may have an arbitrary growth so that

L̇(x̂, t) ≥ 0 implies into faster convergence rates for the differentiator [102]. Our main

contribution is to show how to construct the differentiator gain using only input-output

information in order to satisfy the conditions raised in [11,102].

Now, assume that the control input u in (266) satisfies

|u| ≤ θ̄|ω(t)| ≤ k3||Xt||+ k4 , (269)

where k3 , k4 > 0 are adequate constants, ω(t) is the regressor vector, and θ̄ is a constant

norm bound for the estimate θ(t) of θ∗ in (245) to be generated by an appropriate adaptive

control law defined later on.

According to the regularity condition [57] assumed in (269) for the control signal,

any finite-escape is precluded. Thus, if the parameters λi are properly recursively chosen

[17], the following equalities

ζ0 = e(t) , ζi = e(i)(t) , i = 1 , . . . , p , (270)
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are established in finite time [17], but with the theoretical advantage of being globally

valid (for any initial conditions) since it is not required a priori that the signal e(ρ)(t) be

uniformly bounded, as assumed in the HOSM differentiator with fixed gains [17].

5.4 Adaptive Control for Global Exact Tracking via Output-feedback

The next step is to proposed output-feedback MRAC control laws which satisfy

(269) such that the global differentiator above can be indeed constructed and applied.

5.4.1 Generalized MRAC for Arbitrary Relative Degrees

To overcome the challenge imposed by plants with higher relative degree, we could

use the operator Lm(s) defined in (243). The operator Lm(s) is such that Lm(s)G(s) and

Lm(s)Wm(s) have relative degree one. Thus, an auxiliary output error variable S=Lm(s)e

of relative degree one for the system (254) can be obtained, such that

S = e(ρ−1) + · · ·+ l1ė+ l0e (271)

=

ρ−1∑
i=0

liH0A
i
cXe = H̄Xe ,

where the second equality is derived from Assumption (A3) and (254). Notice that

{Ac, Bc, H̄} is a nonminimal realization of Lm(s)Wm(s). From (242)–(243), one has

S = Lm(s)Wm(s)Kp

[
u− θ∗Tω

]
=

Kp

s+ γm

[
u− θ∗Tω

]
. (272)

Now, if the MRAC law was chosen

u(t) = θT (t)ω(t) , (273)

θ̇(t) = −sgn(Kp)γS(t)ω(t) , (274)

where γ > 0 is the adaptation gain and θ(t) is the estimate of θ∗. Since Lm(s)Wm(s) in

(272) is SPR, it is easy to show that S(t)→ 0 as t→ +∞, according to [16, Section 6.4.1].

Reminding that the error dynamics (254) is ISS with respect to S(t), one can conclude
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that Xe(t) and e(t) tend to zero at least asymptotically.

However, S is not directly available to implement the control law. Thus, using the

proposed global HOSM differentiator, the following exact finite-time estimate for S can

be obtained:

Ŝ = ζρ−1 + · · ·+ l1ζ1 + l0ζ0 . (275)

From (250) and (258), it is easy to show that the following adaptive control signal

u(t) = θT (t)ω(t) , (276)

θ̇(t) = −sgn(Kp)γŜ(t)ω(t) , (277)

satisfies inequality (269) once θ(t) is uniformly bounded (as it will be shown in the proof

of the main theorem). To show this property we just have to write |ω| ≤ k5|X|+ k6 from

(250), with k5 ≥ |Ω1| and k6 ≥ |Ω2|, by considering that r(t) is an uniformly bounded

reference signal. Then, from (257) and the ISS relation of the filtered signal in (258) with

respect to |ω|, we conclude the norm bound (269). Thus, the global differentiator with

dynamic gains given in (268) can indeed be constructed and its state exactly surrogates

the time derivatives of the signal e(t) in the variable Ŝ (275), after some finite time.

5.4.2 Stability Analysis

The next theorem states the global stability results with ultimate exact tracking

for the output-feedback scheme.

Theorem 4. Consider the plant (241) and the reference model (242)–(243). The output-

feedback control law u is given by (276) with adaptive function θ defined in (277), the

global exact estimate of S in (271) is Ŝ given by (275) and constructed with the state ζ =

[ζ0 . . . ζρ−1]T of the proposed differentiator (268). Suppose that assumptions (A1) to (A3)

hold. For λi , i = 0, . . . , ρ−1, properly chosen and L(x̂, t) in (268) satisfying (266), the

estimation of the variable S becomes exact after some finite time, i.e., Ŝ ≡ S. Then, the

closed-loop error system with dynamics (254) is uniformly globally asymptotically stable

in the sense that Xe and, hence, the output tracking error e converge asymptotically to

zero and all closed-loop signals remain uniformly bounded.

Proof 4. In what follows, ki > 0 are new constants not depending on the initial conditi-
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ons. The demonstration is divided in three steps.

In the first one, it is necessary to show that the adaptation law (274) results in

θ uniformly bounded. By contradiction, let us assume θ(t) grows unboundedly with the

time variable, thus there exist finite-time instants T1 > 0 and T2 > 0 such that (259)

and (267) are satisfied, ∀t > max{T1,T2}. Then, the equations in (270) are verified and

the variable S is exactly estimated, i.e., Ŝ ≡ S and the relative degree compensation is

perfectly achieved. Thus, consider the following Lyapunov-like function

V (θ̃, S) =
|Kp|
2γ

θ̃T θ̃ +
1

2
S2 , θ̃(t) := θ(t)− θ∗ , (278)

whose θ̃ is the parameter error. By computing the time derivative of S, from (272), one

can write:

Ṡ = −γmS +Kpθ̃
Tω . (279)

Thus, reminding that ˙̃θ = θ̇, the time derivative of V (θ̃, S) in (278) is given by

V̇ (θ̃, S) =
|Kp|
γ

θ̃ T ˙̃θ + SṠ ,

and using (274), (279) and Kp = |Kp|sgn(Kp), one gets

V̇ (θ̃, S) = −γmS2 ≤ 0 . (280)

From (278) and (280), we can also conclude that the solutions θ̃(t) , S(t) are uniformly

bounded but nothing more. Consequently, θ in (277) tends to some constant value since

θ∗ is a constant parameter vector. Thus, we can prove that

|θ(t)| ≤ θ̄ , ∀t ≥ 0 , (281)

where θ̄ > 0 and u in (276) satisfies the first inequality in (269).

In addition, from (278) and (280), we conclude that V (t) = V (θ̃(t), S(t)) is boun-

ded from below and is nonincreasing with time, so it has a limit, i.e., lim
t→∞

V (t) = V∞.

Therefore, from (280) one has

lim
t→∞

∫ t

0

S2dτ =
V (0)− V∞

γm
<∞ , (282)
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then, by invoking Barbalat’s Lemma [16, 80], one can state S(t) → 0 as t → +∞ since

S(t) is also a uniformly continuous function.

The second step of the proof shows that no finite time escape is possible signal in

the closed-loop system. By using the relations (250) and (253), one has that X = Xe+Xm

and the regressor vector

ω = Ω1Xe + Ω1Xm + Ω2r . (283)

Let xm := [ym ẏm . . . y
(ρ−1)
m ]T and xe := ξ − xm, with ξ in (261). From (254), it can be

shown that e(i) = H0A
iXe, for i = 0, . . . , ρ− 1, hence |xe| ≤ k0|Xe|. Therefore, since xm

is uniformly bounded, then ξ = xe+xm can be affinely norm bounded in |Xe|. In addition,

from (260), the η-dynamics is ISS with respect to y = Cρξ. Thus, one can conclude that

|x| ≤ k1‖ξt‖+ k2, and consequently, |x| ≤ k3‖(Xe)t‖+ k4 and, from (252), one has

|Xm| ≤ k5‖(Xe)t‖+ k6 . (284)

Finally, from (250), (283) and (284), we conclude which ω and consequently the control

input u are all affinely norm bounded by X or Xe, i.e.,

|u| , |ω| ≤ ka‖Xt‖+ kb , (285)

|u| , |ω| ≤ kc‖(Xe)t‖+ kd , (286)

which satisfy the second inequality in (269). Thus, the system signals will be regular and,

therefore, can grow at most exponentially [57]. This fact lead us to the third step of the

proof.

As mentioned earlier, it is possible to rewrite (254) into the normal form [80] such

that the states of the error system are ISS with respect to S. It can be shown reminding that

Lm(s)Wm(s) = 1/(s+ γm). From (254) and (272), one gets Ẋe = AcXe +Bc(Ṡ + γmS).

Further, using the transformation Xe := X̄e +BcS, one has

˙̄Xe = Ac X̄e + (AcBc + γmBc)S , (287)

which clearly implies an ISS relationship from S to either Xe or X̄e since Ac is Hurwitz.

Thus, Xe and e = H0Xe tends asymptotically to zero as well as the state ζ of the diffe-

rentiator, which is also driven by e. From (286), we conclude all remaining signals are
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uniformly bounded. �

5.5 MRAC Controllers with Parameter Projection

Although we have focused only on the generalization of classical MRAC, our re-

sults could be easily applied to other classes of adaptive controllers using some kind of

leakage procedure [16] by means of switching σ–modification [16] or binary control con-

cepts associated with parameter projection [66–68]. Such methodologies are well-known

in the literature for allowing output tracking with better transient responses since the

speed of adaptation (γ) can be increased while keeping the adjustable parameter vector

θ inside some finite ball of appropriate radius.

The error system for such cases would be fundamentally the same as in (254)–

(255). However, the control law (273) would be updated according to an adaptation law

with a σ–modification given by:

θ̇ = −sgn(Kp)[σθ + γŜω] , σsgn(Kp) ≥ 0 , (288)

where Ŝ is given in (275).

The σ–factor, also called projection factor, is defined by

σ =

0 , if |θ| < Mθ or σeqsgn(Kp) < 0 ,

σeq , if |θ| ≥Mθ and σeqsgn(Kp) ≥ 0 ,

(289)

with

σeq = −γŜθ
Tω

|θ|2 (290)

and Mθ(> |θ∗|) is a constant. Notice that the stability analysis of the closed-loop system

would follow the same steps that were given previously in the proof of Theorem 4. In

particular, the regularity condition in (269) is directly satisfied with θ̄ = Mθ since the

boundedness of θ is guaranteed by the projection factor (289)–(290), as discussed in the

following.

The control law u = θTω with adaptive law (288)–(290) is called B-MRAC in

[67,68] due to its similarity to the binary control given in [66]. Indeed, in both cases, the
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integral adaptation is applied inside some invariant compact set, for example, the finite

ball Mθ for θ in B-MRAC. In latter case, considering that |θ(0)| ≤ Mθ, the projection

of update vector can be understood geometrically as follows: if the term −γŜω points

outwards the ball |θ| ≤ Mθ, the update vector is projected onto the tangent plane of

the sphere; if it points inwards, the σ–factor is equal to zero and θ(t) moves to the

interior of the ball, according to the standard MRAC gradient adaptation law. Then,

it is straightforward to prove that the closed ball with radius Mθ is invariant, that is,

|θ(t)| ≤Mθ, ∀t ≥ 0. A mathematical demonstration of that can be derived by considering

the next Lyapunov function candidate

Vθ =
1

2
θT θ . (291)

Indeed, the time derivative of (291) along of (288) results in

V̇θ = (σeq − σ)|θ|2 = 2(σeq − σ)Vθ , (292)

and (σeq − σ) ≤ 0 for |θ| ≥ Mθ, by virtue of (289) and (290). Thus, the set |θ| ≤ Mθ is

positively invariant and therefore θ̃T θ̃ is uniformly bounded by a constant (Q.E.D.).

5.6 Simulation Example

To show the efficacy of proposed adaptive control scheme, let us consider an exam-

ple borrowed from [16, Example 6.4.3], where the objective is to ensure that a naturally

unstable plant with relative degree three is stabilized and forced to track the output signal

ym of the reference model.

Consider the following linear unstable system (241) with relative degree ρ = 3:

ẋ(t) =


0 1 0

0 0 1

10 −3 −6

x(t) +


0

0

1

u(t) , (293)

y(t) =
[
1 0 0

]
x(t) . (294)
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The reference model is given by

ym =
1

(s+ 2)3
r =

1

(s+ 2)(s2 + 4s+ 4)
r, (295)

where r is

r(t) =

20sin (2t) , for t < 25 ,

0 , for t ≥ 25 .

(296)

The regressor vector (246) is generated with I/O filters

ω̇i =

−10 −25

1 0

ωi +

1

0

 i , i = u, y

and the norm observer (257) is obtained by x̂ = 0.1
s+1
|ω| . The system (293) is already in

the normal form (261), where x = ξ ∈ R3, and the η–dynamics in (260) is dropped out.

The equivalent input disturbance is de(x, t) = 10x1 − 3x2 − 6x3 so that |de(x, t)| ≤ 19|x̂|,
according to (262). Since the global exact HOSM differentiator is employed, its dynamic

gain must satisfy (266) with L(x̂, t) = 19|x̂(t)|+ |...ym(t)|+ |u(t)| and
...
ym(t) = −8ym(t)−

12ẏm(t) − 6ÿm(t) + r(t) being implemented from the state-space representation of the

reference model. Finally, the differentiators can be written as

ζ̇0 = v0 = −5L(x̂, t)1/3|ζ0 − e|2/3sgn(ζ0 − e) + ζ1 ,

ζ̇1 = v1 = −3L(x̂, t)1/2|ζ1 − v0|1/2sgn(ζ1 − v0) + ζ2 ,

ζ̇2 = v2 = −1.5L(x̂, t)sgn(ζ2 − v1) .

From (242)–(243) and (295), one can obtain γm = 2 and Lm(s) = s2 + 4s + 4, which

leads to S = ë+ 4ė+ 4e according to (271). Nevertheless, ë and ė are not available, then

HOSM differentiators are applied to construct Ŝ = ζ2 + 4ζ1 + 4ζ0. Therefore, the control

law u(t) = θ(t)Tω(t) with adaptive law θ̇(t) = −8Ŝ(t)ω(t) can be implemented, according

to (276)–(277), reminding that Kp = 1 in our example.

For comparison purposes, the classical MRAC for relative degree three presented
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in [16] is also simulated. Its control law is given by

u = θTω − εsgn(Kp)(φ
TΓφ1)− α0(p1 − p0)(φTΓφ)2r0

− 4α0(φTΓφ)(φTΓφ̇)r0 + α2
0(φTΓφ)4r0

− α0(φTΓφ)3εsgn(Kp) , (297)

where the adaptation law is

θ̇ = −Γεφsgn(Kp) , ρ̇0 = γεr0 ,

ṙ0 = −(p0 + α0(φTΓφ)2)r0 + (φTΓφ)εsgn(Kp) ,

ê =
1

s+ q0
ρ0r0 , ε = e− ê ,

φ1 =
1

s+ p1
ω , φ =

1

s+ p0
φ1 , (298)

with the design parameters chosen as in [16, Example 6.4.3]: γ = 8, Γ = 8I, p0 = 2,

p1 = 2, q0 = 2 and α0 = 0.01. The plant initial conditions were y(0) = x1(0) = −1 and

x2(0) = x3(0) = 0, while the initial conditions for all remaining designed filters were set

to zero.

The simulation results are presented in Figure 19 to Figure 21, where the Euler

method with fixed step-size of 10−5 s was applied to numerical integration. In Figure 19,

the generalized MRAC is compared to classical MRAC. As can be seen by Figure 19(a)

and Figure 19(b), the tracking objective is reached with a better transient response when

the generalized MRAC strategy is applied. Moreover, the latter has a less conservative

control effort, see Figure 19(c) and Figure 19(d).

Figure 20 shows the responses of the estimated parameters θi(t), i = 1 , . . . , 6.

Notice that the vector of ideal matching parameters is θ∗ = [0 ,−9 , 162 , 810 ,−54 , 1]T .

In this case, |θ∗| = 827.8539 and the constant upper bound Mθ for |θ| should be chosen

at least equal to |θ∗|. It suggests the use of projection factor described in Section 5.5

would not bring any advantage in our example since the updated parameters θi(t) do not

reach values greater (lesser) than 20 (or −25), for all time. As usual in MRAC schemes,

the convergence of the tracking error e(t) → 0 can be achieved without the parameters

convergence to θ∗.

In Figure 21(a), it can be seen how the norm observer state x̂ overcomes after a

finite time the actual value of the x-norm. Figure 21(b) shows the adaptive gain L(x̂, t)
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Figure 19 – Generalized MRAC × MRAC.
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Figure 20 – Generalized MRAC: estimated parameter vector θ(t).

applied to upper bound the signal |e(3)(t)| used in the differentiator (268).

Remark 6. The procedure for ρ = 3 given in (297)–(298) may be extended to the case of

ρ > 3 by following similar steps [16]. However, the complexity of the control input signal

u in (297) increases considerably with ρ to the point that it defeats any simplicity we may

gain from analysis by using a single Lyapunov-like function to establish stability with an

unnormalized adaptive law. In addition to complexity the highly nonlinear terms in the

control law may lead to a “high bandwidth”control input that may have adverse effects on
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robustness with respect to modeling errors [16]. y
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Figure 21 – Simulation Results.

5.7 Application to Bilateral Teleoperation

Teleoperation deals with a control system which the aim is to extend the human

ability in manipulating devices remotely [70]. In bilateral teleoperation [71,72], the remote

environment contains adverse conditions (reaction forces fe), generated by the interaction

between the slave and its environment. This force is reflected to the operator terminal

acting into a joystick or manipulator (the master), which is similar to the plant (the slave).

It gives to the operator a real feeling over the slave behavior. Thus, by controlling the

master, it is expected that slave is being controlled too.
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The master-slave manipulators with n degrees of freedom can be represented by

Mmẍm (t) + Cmẋm (t) +Kmxm (t) = um(t) + fh(t) + fe(t) , (299)

Msẍs (t) + Csẋs (t) +Ksxs (t) = us(t) + fe(t) , (300)

where xm, xs ∈ Rn are the degrees of freedom of the manipulators; um, us ∈ Rn are force

input signals; fh ∈ Rn is the external force exerted on the master by the human operator;

fe ∈ Rn is the reaction force between the slave and its environment; Mm and Ms are

symmetric positive definite inertia matrices; Cm and Cs are symmetric viscous matrices;

Km and Ks represent the compliance of the end-effector.

Transparency is the major goal in bilateral teleoperation architecture design [70].

A telerobotic system is transparent if the human operator feels as if directly interacting

with the remote task. Formally, transparency is achieved if master and slave movements

are equal (xs = xm) and the force displayed to the human operator is exactly the reaction

force from the environment.

For the sake of simplicity, in this chapter it is assumed robots of one degree of

freedom without human operators in the loop (fh = 0), where the desired trajectories

are generated automatically by a reference model. In what follows, the index i = m, s

is applied to indicate either master or slave manipulators, respectively. The parameters

Mi = 0.04 + ∆i, Ci = 3.424 and Ki = 0 were chosen similarly to [71]. The uncertainty in

the slave inertia matrix is chosen such that ∆m = 0 and ∆s = 0.02. The external force

due to the environment can be simply modeled by fe = −kexs, where ke is the stiffness

coefficient [72]. The state-space description of (299)–(300) is

Ẋi =

0 1

0 −(Mi + ∆i)
−1Ci

Xi +

 0

(Mi + ∆i)
−1

 (ui + fe) ,

yi =
[
1 0

]
Xi , (301)

with (Mm + ∆m)−1Cm = 85.6, (Ms + ∆s)
−1Cs = 57.06, (Mm + ∆m)−1 = 25 and (Ms +

∆s)
−1 = 16.66. The state vectors are given by Xi = [xi , ẋi]

T and fe = −8.9xs. The

reference model selected by the designer is given by

Md(ÿr − ẍd) + Cd(ẏr − ẋd) +Kd(yr − xd) = fe , (302)
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where Md = 0.04, Cd = 0.4, Kd = 1 and xd(t) = sin(t) is a desired trajectory. Then,

(302) can be represented in the following I/O form (242):

yr = Wm(s)r =
1

s2 + 10s+ 25
r =

1

(s+ 5)2
r , (303)

r = 25fe + ẍd + 10ẋd + 25xd (304)

where ym in (242) was replaced by yr to avoid clutter with the master indexation, when

i = m in (301). Note that, we can obtain (256) directly from (301) and (303), which

means the adaptive control methodology developed here is applicable to the teleoperation

problem.

The regressor vector ωi = [ωui , ωyi , yi , r]
T is generated by means of the I/O filters

(246):

ω̇ui = −5ωui + ui , ω̇yi = −5ωyi + yi , (305)

and the norm observer (257) is obtained by x̂i = 0.1
s+1
|ωi| , The systems represented by

(301) are already in the normal form with Xi = ξi ∈ R2 and without η-dynamics. Hence,

the equivalent input disturbance dem(xm, t) = −85.6ẋm and des(xs, t) = −57.06ẋs. From

(259) and (262), we can write |dei(x, t)| ≤ 90|x̂i|+δi0, where max{|−85.6| , |−57.06|} < 90

and δs0 = δm0 = 0.01. The dynamic gains are chosen to satisfy (266) assuming the second

derivatives ëi of the error signals em=xm−xr and es=xs−xm. We can obtain Lm(x̂m, t) =

90(|x̂m(t)|+δm0 )+ |ÿr(t)|+30(|um(t)|+ |fe(t)|), where ÿr(t) = −25yr(t)−10ẏr(t)+r(t) can

be implemented from the state-space representation of (303), and Ls(x̂s, t) = 90(|x̂s(t)|+
δs0) +ks+ 30(|us(t)|+ |fe(t)|), with constant ks > 0 being a rough and known norm bound

for |ÿr(t)| ≤ ks, since ÿm(t) → ÿr(t) as t → +∞. Hence, the HOSM differentiators (268)

are implemented by

ζ̇ i0 = vi0 = −5Li(x̂i, t)1/2|ζ i0 − ei|1/2sgn(ζ i0 − ei) + ζ i1 ,

ζ̇ i1 = vi1 = −3Li(x̂i, t)sgn(ζ i1 − vi0) .

By comparing (303) to (242)–(243), one can concluded that γm = 5 and Lm(s) = s + 5,

which leads to Si = ėi + 5ei according to (271). Nevertheless, ėi is not available then

HOSM differentiators are applied, such that Ŝi = ζ i1 + 5ζ i0.
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In order to compare our adaptive controller with L1 adaptive control strategy in-

troduced in [61] (see equations (3)–(8) therein), our control law ui=θTi ωi was implemented

according to (276), adaptive law with parameter projection (288)–(290), adaptation gain

γ = 102 and Mθ = 10. In Figure 22(a), the exact tracking between the output signals of

the master (ym) and the slave (ys) is reached by means of our B-MRAC generalization

using HOSM differentiators given in Section 5.5. On the other hand, the slave control

signal us provided by the projection based L1 adaptive controller cannot guarantee the

synchronization of the slave and master (ys 6= ym), even if the the adaptation gain Γ

in [61] increases from 102 to 104, see Figure 22(b). The control signals us of each strategy

are shown in Figure 22(c) and Figure 22(d).
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Figure 22 – Output-Feedback Adaptive Bilateral Teleoperation Scheme.

5.8 Conclusions

The global real-time differentiation issue and its application to obtain output-

feedback model reference adaptive controllers for uncertain plants with arbitrary relative
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degree have been explored in the present contribution. The proposed differentiator uses

variable gains which are updated by a state-norm observer based on input-output filters.

Global asymptotic stability of the overall closed-loop system was demonstrated and exact

output tracking of a desired reference model is guaranteed. The generalization of the

proposed methodology for other adaptation laws using parameter projection and leakage

tools were also considered. Numerical results have shown the simplicity of the propo-

sed approach when compared to classical adaptive controllers for higher relative degrees.

An application to adaptive impedance force control for bilateral teleoperation was also

addressed.
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6 UNIT VECTOR SLIDING MODE CONTROL

In this chapter, we propose a unit vector control law by output feedback to solve the

problem of global exact output tracking for a class of multivariable uncertain plants with

nonlinear disturbances. In order to face the nonuniform arbitrary relative degree obstacle,

we extend our ealier estimation scheme based on global finite-time differentiators using

dynamic gains to a multivariable architecture.

A diagonally stable condition over the system high-frequency gain (HFG) matrix

has to be assumed. Preserving the simplicity of its monovariable framework, variable gain

super-twisting algorithm (STA) is employed to obtain the robust and exact multivariable

differentiator. Moreover, state-norm observers for the unmeasured state variables are

constructed to upper bound the disturbances as well as to update the differentiator gains,

being both state dependent.

Uniform global exponential stability and ultimate exact tracking are proved. As

an alternative to chattering alleviation, we appeal to the Emelyanov’s concept of binary

control in order to obtain a continuous control signal replacing the unit vector function in

the controller by a high-gain gradient adaptive law with parameter projection. As shown

in the existing literature for monovariable systems, the proposed multiparameter binary-

adaptive formulation tends to the unit vector control as the adaptation gain increases to

infinity, also smoothing the transition from adaptive to sliding mode control.

A numerical example is portrayed to illustrate the potentialities of the developed

multivariable techniques.

6.1 Problem Formulation

Consider an uncertain MIMO system described by:

ẋ = Apx+Bp[u+ d(x, t)] , y = Hpx , (306)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rm is the output and d(x, t)∈Rm

is a state dependent uncertain nonlinear disturbance. The uncertain matrices Ap, Bp

and Hp belong to some compact set, such that the necessary uncertainty bounds to be

defined later are available for design. The following basic assumptions are usual in MIMO
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adaptive control:

(A1) G(s) = Hp(sI−Ap)−1Bp is minimum phase and has full rank.

(A2) The linear subsystem is controllable and observable.

(A3) The observability index ν of G(s) (see [103]), or an upper bound of ν, is

known.

We also make the following assumptions that are discussed and motivated in [74].

(A4) The left interactor matrix Ξ(s) (see [16]) is diagonal and G(s) has a known

global vector relative degree {ρ1, . . . , ρm} (i.e., Ξ(s) = diag{sρ1 , . . . , sρm}). The matrix

Kp∈Rm×m, finite and nonsingular, is referred to as the high-frequency gain (HFG) matrix

and satisfies Kp = lims→∞ Ξ(s)G(s) .

(A5) A nonsingular matrix Sp is known such that −KpSp is diagonally stable, i.e.

there exists a diagonal matrix D > 0 such that DK + KTD = −Q, with Q = QT > 0

and K = −KpSp.

To achieve global exact tracking using only output feedback the following assump-

tion is made.

(A6) The input disturbance d(x, t) is assumed to be uncertain, locally integrable

and norm bounded by |d(x, t)| ≤ kx|x|+ kd, ∀x, t, where kx, kd ≥ 0 are known scalars.

Note that the relative degree of system (306) depends only on the linear part,

being independent of the disturbance d. Although this assumption restricts the class

of disturbances coped with, it represents a challenge in the context of output-feedback

sliding mode control since global stability and exact tracking are still pursued. Despite

the positive real diagonal Jordan form (PDJ) like conditions assumed for the HFG matrix

in references [104], [105] are less conservative than that considered in (A5), no input

disturbance (d ≡ 0) could be take into account in such previous designs.

Let the reference signal ym(t) ∈ Rm be generated by the following reference model

ym = Wm(s) r , (307)

Wm(s) = diag
{

(s+γ1)−1, . . . , (s+γm)−1
}
L−1(s) ,

where γi > 0 (i = 1, · · · ,m), r(t) ∈ Rm is an arbitrary uniformly bounded piecewise

continuous reference signal and

L(s) = diag{L1(s), L2(s), . . . , Lm(s)} , (308)
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with Li(s)=s(ρi−1) + l
[i]
ρi−2s

(ρi−2) + · · ·+ l
[i]
1 s+ l

[i]
0 (i=1,. . .,m) being Hurwitz polynomials

and the superscript [i] indicating that a parameter belongs to Li(s). The transfer function

matrix Wm(s) has the same vector relative degree as G(s) and its HFG is the identity

matrix.

The main objective is to find a control law u such that the output error

e := y − ym (309)

tends asymptotically to zero, for arbitrary initial conditions. When the plant is known

and d(t) ≡ 0, a control law which achieves the matching between the closed-loop transfer

function matrix and Wm(s) is given by u∗ = θ∗
T
ω, where the parameter matrix is written

as θ∗ =
[
θ∗

T

1 θ∗
T

2 θ∗
T

3 θ∗
T

4

]T
, with θ∗1, θ

∗
2∈Rm(ν−1)×m, θ∗3, θ

∗
4∈Rm×m and the regressor vector

ω = [ωTu ωTy yT rT ]T (wu, wy ∈ Rm(ν−1)) is obtained from I/O state variable filters given

by:

ωu = A(s)Λ−1(s)u , ωy = A(s)Λ−1(s)y , (310)

where A(s) = [Isν−2 Isν−3 · · · Is I]T , Λ(s) = λ(s)I with λ(s) being a monic Hurwitz

polynomial of degree ν − 1. The matching conditions require that θ∗T4 = K−1
p .

Consider the following realization of (310)

ω̇u = Φωu + Γu , ω̇y = Φωy + Γy , (311)

Φ∈Rm(ν−1)×m(ν−1), Γ∈Rm(ν−1)×m (312)

where det(sI−Φ) = det(Λ(s)) = [λ(s)]m. Define the state vetor X = [xT , ωTu , ω
T
y ]T with

dynamics described by Ẋ = A0X+B0u+B′0d, y = HoX. Then, adding and subtracting

B0θ
∗Tω and noting that there exist matrices Ω1 and Ω2 such that

ω = Ω1X+Ω2r , (313)

one has

Ẋ = AcX +BcKp[θ
∗T
4 r + u− u∗] +B′0d , y = HoX , (314)

where Ac = A0 +B0θ
∗TΩ1 and Bc = B0θ

∗T
4 . Notice that (Ac, Bc, Ho) is a nonminimal



136

realization of Wm(s). For analysis purposes, the reference model can be described by

Ẋm = AcXm +BcKp[θ
∗T
4 r − df ] +B′0d, ym = HoXm , (315)

the equivalent input disturbance

df = Wd(s)d , (316)

where

Wd(s)=[Wm(s)Kp]
−1 W̄d(s), W̄d(s)=Ho (sI −Ac)−1B′0 . (317)

Thus,ym = Wm(s)Kp

[
θ∗T4 r −Wd(s)d

]
+ W̄d(s)d, it is straightforward to conclude that

ym = Wm(s) r. Thus, the error dynamics with state

Xe := X −Xm (318)

is given by:

– State space –

Ẋe = AcXe +BcKp[u− θ∗
T

ω + df ], e = Ho Xe, (319)

– Input-output form –

e = Wm(s)Kp

[
u− θ∗Tω + df

]
. (320)

6.2 State-Norm Observer and Norm Bound for Equivalent Disturbance

In what follows we use state-norm observers to obtain a norm bound for x and

df (x, t).

Considering Assumption (A6) and applying [8, Lemma 3] to (314), it is possible to

find k∗x > 0 such that, for kx ∈ [0, k∗x] a norm bound for X and x can be obtained through

first order approximation filters (FOAFs) (see details in [8]). Thus, one has

|x(t)| ≤ |x̂(t)|+ π̂(t) , (321)
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where

x̂(t) :=
1

s+ λx
[c1kd + c2|ω(t)|] , (322)

with c1, c2, λx > 0 being appropriate constants that can be computed by the optimization

methods described in [56]. As in [8], the exponentially decaying term π̂ accounts for the

system initial conditions. Reminding that df = Wd(s)d it is clear that |df | ≤ |Wd(s) ∗ d|,
modulo an exponential decaying term depending on the initial conditions. Moreover,

from (A6) and (322), one has |d(x, t)| ≤ kxx̂(t) + kd, modulo π̂ term, and one can write

|df | ≤ d̂f + π̂f , where π̂f is an exponentially decaying term,

d̂f (t) :=
cf

s+ λf
[kxx̂(t) + kd] , (323)

and
cf

s+λf
is a FOAF designed for Wd(s), with adequate positive constants cf and λf .

6.3 Unit Vector Control Design

For systems with uniform relative degree one, i.e. ρ1 = ρ2 = . . . ρm = 1, the main

idea is to close the control loop with a nominal control together with a unit vector control

(UVC) term to cope with uncertainties and disturbances:

u = (θnom)Tω − %(t)Sp
e

|e| , (324)

where e ∈ Rm, Sp ∈ Rm×m, % ∈ R, θnom is the nominal value for θ∗, Sp satisfies (A5) and

the modulation function %(t) ≥ 0 is designed to induce a sliding mode on the manifold

e=0 and is such that:

%(t) ≥ (1 + cd)|S−1
p

[
(θnom − θ∗)Tω − df

]
|+ δ , (325)

where cd > 0 is an appropriate constant and δ > 0 can be arbitrarily small. Note that

the nominal control signal allows the reduction of the modulation function amplitude if

|θnom − θ∗| is small. Since Ap, Bp and Hp belong to some known compact set, an upper

bound θ̄ ≥ |θnom−θ∗| can be obtained. Thus, a possible choice for the modulation function

to satisfy (325) is given by

%(t) = (1 + cd)|S−1
p |

[
θ̄|ω|+ |d̂f |

]
+ δ. (326)
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For relative degree one plants, Wm(s) = diag {(s+ γ1)−1, . . . , (s+ γm)−1} (L(s) =

Im) and since −KpSp is diagonally stable, by applying Lemma 1 in the appendix, one

can conclude that the above scheme is uniformly globally exponentially stable and the

output error e becomes identically zero after some finite time. For higher relative degree

plants, one could use the operator L(s) defined in (308), to overcome the relative degree

obstacle. The operator L(s) is such that L(s)G(s) and L(s)Wm(s) have uniform vector

relative degree one. The ideal sliding variable S=L(s)e ∈ Rm is given by

S=


e

(ρ1−1)
1 + · · ·+ l

[1]
1 ė1 + l

[1]
0 e1

...

e
(ρm−1)
m + · · ·+ l

[m]
1 ėm + l

[m]
0 em



=



ρ1−1∑
j=0

l
[1]
j h

T
1A

(j)
c Xe

...

ρm−1∑
j=0

l
[m]
j hTmA

(j)
c Xe


= H̄Xe ,

(327)

where hi ∈ Rn+2m(ν−1) is the i-th row of Ho matrix and the second equality is derived

from Assumption (A4) and (319). From (307) and (308), one has

S = L(s)Wm(s)Kp
[
u− θ∗T

ω + df

]
= diag

{
(s+ γ1)−1, · · · , (s+ γm)−1

}
Kp

[
u− θ∗T

ω + df

]
. (328)

Notice that {Ac, Bc, H̄} is a nonminimal realization of L(s)Wm(s). If the control signal

is given by u = (θnom)Tω − %(t)Sp
S
|S| , with modulation function %(t) satisfying (325),

then the closed-loop error system is uniformly globally exponentially stable and the ideal

sliding variable S becomes identically zero after some finite time, according to Lemma 1

in the appendix. However, S is not directly available to implement the control law.

6.4 Global MIMO HOSM Differentiator with Dynamic Gains

In what follows, a MIMO HOSM differentiator with coefficients being adapted

using the estimate for the norm of the state x provided in (321) is proposed to achieve

global exact estimation, i.e., exact differentiation of signals with any initial conditions

and unbounded higher derivatives.
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It is easy to show that the nonlinear system (306) can be transformed into the

normal form [106, p. 224]:

η̇ = q(ξ, η) , (329)

ξ̇i1 = ξi2 ,

...
... (330)

ξ̇iρi−1 = ξiρi ,

ξ̇iρi = bi(ξ, η) +
m∑
j=1

aij(ξ, η) ,

yi = ξi1 , (331)

for all 1 ≤ i ≤ m, where zT = [ηT ξT ] ∈ Rn with η ∈ R(n−
∑m
i=1 ρi) being referred to the

state of the inverse or zero dynamics and ξ = [ξ1
1 , . . . , ξ

1
ρ1−1, · · · , ξm1 , . . . , ξmρm−1]T =

[y1, . . . , y
(ρ1−1)
1 , · · · , ym, . . . , y(ρm−1)

m ]T the external dynamics state. From Assumption

(A1), we can concluded that η-dynamics is stable since the plant has minimum phase.

Moreover, the terms aij(ξ, η) and bi(ξ, η) are calculated by means of Lie Derivative such

that aij(ξ, η) = aij(x) =
∑m

j=1H
[i]
p Aρi−1

p B
[i,j]
p (uj +dj(x, t)) and bi(ξ, η) = bi(x) = H

[i]
p Aρip x,

where H
[i]
p represents the i-th line matrix Hp and B

[i,j]
p the element of line i-th line and

j-th column of Bp. Therefore, for all 1 ≤ i, j ≤ m, the ρi-derivative output yi satisfy

y
(ρi)
i = H [i]

p A
ρi
p x+

m∑
j=1

H [i]
p A

ρi−1
p B[i,j]

p (uj + dj(x, t)) . (332)

The absolute value of y
(ρi)
i satisfy

|y(ρi)
i | =

∣∣∣∣∣∣H [i]
p A

ρi
p x+

m∑
j=1

H [i]
p A

ρi−1
p B[i,j]

p (uj + dj(x, t))

∣∣∣∣∣∣
≤
∣∣∣H [i]

p A
ρi
p

∣∣∣ |x|+ m∑
j=1

∣∣∣H [i]
p A

ρi−1
p B[i,j]

p

∣∣∣ (|uj |+ |dj(x, t)|)
≤
∣∣∣H [i]

p A
ρi
p

∣∣∣ |x|+ max
k=1,··· ,m

{∣∣∣H [i]
p A

ρi−1
p B[i,j]

p

∣∣∣}× m∑
j=1

(|uj |+ |dj(x, t)|)

≤
∣∣∣H [i]

p A
ρi
p

∣∣∣ |x|+ max
k=1,··· ,m

{∣∣∣H [i]
p A

ρi−1
p B[i,j]

p

∣∣∣}×m(|u|+ |d|) . (333)



140

By using Assumption (A6) and (333), an upper for (332) is

|y(ρi)
i | ≤ κ

[i]
1 |x|+ κ

[i]
2 + κ

[i]
3 |u| , (334)

where κ
[i]
1 >

∣∣∣H [i]
p A

ρi
p

∣∣∣+m max
k=1,··· ,m

{∣∣∣H [i]
p A

ρi−1
p B[i,j]

p

∣∣∣}kx,
κ

[i]
2 > m max

k=1,··· ,m

{∣∣∣H [i]
p A

ρi−1
p B[i,j]

p

∣∣∣} kd and

κ
[i]
3 > m max

k=1,··· ,m

{∣∣∣H [i]
p A

ρi−1
p B[i,j]

p

∣∣∣} are know constants.

From (334) and (309), we can write

|e(ρi)
i (t)| ≤ L[i]

ρi(x, t) = κ
[i]
1 |x|+ κ

[i]
2 + κ

[i]
3 |u|+ |y(ρi)

mi (t)| . (335)

Now, assume that the control input satisfies the following regularity condition [57]:

|u| ≤ k%%(t) ≤ κ4||Xt||+ κ5 , (336)

for constants κ
[i]
% , κ

[i]
4 , κ

[i]
5 > 0 and an appropriate continuous modulation function %(t) ≥

0, to be defined later on. Then, applying (321), we can obtain the following upper bound

with the norm observer variable x̂(t) in (321)–(322):

|e(ρi)
i (t)| ≤ κ[i]

1 (|x̂|+ δ0) + κ
[i]
2 + κ

[i]
3 κ

[i]
% %(t) + |y(ρi)

mi (t)| , (337)

modulo exponential decaying terms due to initial conditions, which take into account

the transient of the FOAF. By defining known positive constants k
[i]
1 , k

[i]
2 , k

[i]
3 and κ

[i]
m

satisfying κ
[i]
m ≥ |y(ρi)

mi (t)|, k[i]
1 ≥ κ

[i]
1 , k

[i]
2 ≥ κ

[i]
1 δ0 +κ

[i]
2 +κ

[i]
m and k

[i]
3 ≥ κ

[i]
3 κ

[i]
% , we can define

L[i]
ρi

(x̂, t) := k
[i]
1 |x̂|+ k

[i]
2 + k

[i]
3 %(t) , (338)

and state the following upper bound constructed only with measurable signals

|e(ρi)
i (t)| ≤ L[i]

ρi
(x̂, t) , ∀t ≥ T , (339)

for some finite time T > 0.

The sliding variable S can be estimated using a global MIMO extension of the
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HOSM differentiator proposed in [17] such that exact tracking can be achieved. The idea

here is to use a global HOSM differentiator with dynamic gains of order pi = ρi − 1 for

each output ei ∈ R, i = 1, . . . ,m as follows:

ζ̇
[i]
0 =v

[i]
0 =−λ[i]0 L[i]

ρi(x̂, t)|ζ
[i]
0 −ei(t)|

pi
pi+1 sgn(ζi0−ei(t))+ζ

[i]
1

...

ζ̇
[i]
j =v

[i]
j =−λ[i]j L[i]

ρi(x̂, t)|ζ
[i]
j −v

[i]
j−1|

pi−j

pi−j+1sgn(ζ
[i]
j −v

[i]
j−1)+ζ

[i]
j+1,

...

ζ̇ [i]pi =−λ[i]piL[i]
ρi(x̂, t)sgn(ζ [i]pi − v[i]pi ),

(340)

where L[i]
ρi(x̂, t) is a variable gain designed such that |e(ρi)

i (t)| ≤ L[i]
ρi(x̂, t). A superscript

[i] is used to indicate that a particular parameter or variable belongs to a differentiator

related with ei.

If the parameters λ
[i]
j are properly recursively chosen4, then the equalities

ζ
[i]
0 = ei(t); ζ

[i]
j = e

(j)
i (t), i = 1, . . . ,m; j=1, . . . , pi

are established in finite time [11,102]. Thus, using a global MIMO HOSM differentiator,

composed by m differentiators of order ρj − 1 for each output ej, the following estimate

for S can be obtained:

Ŝ =


ζ

[1]
ρ1−1 + · · ·+ l

[1]
1 ζ

[1]
1 + l

[1]
0 ζ

[1]
0

...

ζ
[m]
ρm−1 + · · ·+ l

[m]
1 ζ

[m]
1 + l

[m]
0 ζ

[m]
0

 . (341)

6.5 Global Output-feedback Unit Vector Control

Now, we propose a Global Output-feedback Unit Vector Sliding Mode Controller

based on Multivariable HOSM differentiator. The Figure 23 shows a block diagram of

our proposed control scheme.

The control law is given by:

u = (θnom)Tω − %(t)Sp
Ŝ

|Ŝ|
, (342)

4In particular, the following choice is valid for pi≤3: λ
[i]
0 = 5, λ

[i]
1 = 3, λ

[i]
2 = 1.5, λ

[i]
3 = 1.1. For more

details, see [17].
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ẋ = Apx+Bp [u+ d(x, t)]
y = Hpx

d(x, t) y MRAC
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u r
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ζ

Figure 23 - Global Output-feedback Unit Vector Sliding Mode Controller based on Mul-
tivariable HOSM differentiator.

where the modulation function %(t) satisfies (325).

The following auxiliary lemma will be instrumental for the proof of Theorem 5.

Lemma 1. Consider the MIMO system

S(t) = M(s)K[u+ d(t)] , (343)

where M(s) = diag {(s+γ1)−1, . . . , (s+γm)−1}, γj > 0, K ∈ Rm×m is the high-frequency

gain matrix and is such that −K is diagonally stable, and d(t) is locally integrable (LI). If

u = −%(t) S
|S| , % ≥ (1 + cd)|d(t)|+ δ, where %(t) is LI, cd > 0 is an appropriate constant,

δ ≥ 0 is an arbitrary constant, then, the inequality

|S(t)| and |xe(t)| ≤ c|xe(0)|e−λt (344)

holds ∀t ≥ 0 for some positive constants c, λ, where xe is the state of any stabilizable

and detectable realization of (343) (possibly nonminimal). Moreover, if δ > 0, then S(t)

becomes identically zero after some finite time ts ≥ 0.

Proof 1. Consider a stabilizable and detectable realization of (343) described by ẋ =

Ax+B(u+d), S=Hx. From (343), one can obtain the normal form η̇=A11η+A22S, Ṡ=

AmS+K(u+d+πη) , where Am = diag{−γ1, . . . ,−γm}, |πη| ≤ cη|η(0)|e−ληt and the zero

dynamics given by η̇=A11η is stable, since M(s) is minimum phase. The state vector of

this realization is xTe =[ηT ST ]. Consider the function V (S)=STDS, where KTD+DK=

Q, Q = QT > 0 for some diagonal matrix D > 0. The time derivative of V (S) can

be upper bounded by V̇ ≤ 2STDAmS − %S
TQS
|S| + 2|DK||S|(|d| + |πη|) , Choosing cd ≥

2|DK|/λmin(Q)− 1, it can be verified that V̇ ≤ −κ1|S|2−δ|S|+|π̄η||S|. Now, following the
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proof of Lemma 1 given in [8], one can conclude that S(t) ≤ (κ2|S(0)|+ κ3|η(0)|) e−λ̄t.
Moreover, if δ > 0, it can be shown that S becomes identically zero in some finite time ts.

Since A11 is Hurwitz, one can further conclude that (344) holds. �

The proposed control scheme guarantees global stability properties with ultimate

exact tracking, as stated in the following theorem.

Theorem 5. Consider the plant (306), the reference model (307)–(308) and the control

law given by (342) with modulation function % defined in (326) satisfying (325). The

estimate Ŝ in (341) is given by the global MIMO Differentiator (340). Suppose that

assumptions (A1) to (A6) hold. For λ
[i]
j , i = 1, . . . ,m, j = 0, . . . , ρi−1, properly chosen

and L[i]
ρi(x̂, t) in (340) satisfying (338), the estimation of the ideal sliding variable ST

becomes exact after some finite time, i.e., ŜT ≡ ST . Then, the closed-loop error system

with dynamics (319) is uniformly globally exponentially stable in the sense that Xe(t) and,

hence, the output tracking error e(t) converge exponentially to zero and all closed-loop

signals remain uniformly bounded.

Proof 5. In what follows, ki > 0 are constants not depending on the initial conditions.

The demonstration is divided in two steps. In the first one, it is necessary to show that

no finite time escape in the closed-loop system signals is possible. By using the relations

(313) and (318), one has that X = Xe +Xm and the regressor vector

ω = Ω1Xe + Ω1Xm + Ω2r . (345)

Let xm := [ym1 , . . . , y
(ρ1−1)
m1 , · · · , ymm , . . . , y(ρm−1)

mm ]T and xe := ξ − xm, with ξ in (330).

From (319), it can be shown that e
(j)
i = H

[i]
0 A

jXe, for j = 0, . . . , ρi − 1, hence |xe| ≤
k0|Xe|. Therefore, since xm is uniformly bounded, then ξ = xe + xm can be affinely norm

bounded in |Xe|. In addition, from the minimum-phase assumption in (A1), we conclude

the η-dynamics in (329) is input-to-state stable (ISS) – see [80] – with respect to ξ. Thus,

one can conclude that |x| ≤ k1‖ξt‖ + k2, and consequently, |x| ≤ k3‖(Xe)t‖ + k4. Due

to assumption (A4) concerning the linear growth condition of the nonlinear disturbances

with respect to the unmeasured state x, from (315) and (316), one has

|Xm| ≤ k5‖(Xe)t‖+ k6 . (346)
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Finally, from (313), (345) and (346), we conclude ω, the term df in (319), and con-

sequently the control input u with modulation function % in (326) are all affinely norm

bounded by X or Xe, i.e.,

|u| , |df | , |ω| ≤ ka‖Xt‖+ kb , (347)

|u| , |df | , |ω| ≤ kc‖(Xe)t‖+ kd . (348)

Thus, the system signals will be regular and, therefore, can grow at most exponentially

[57]. Then, each dynamic gain L[i]
ρi(x̂, t) of our MIMO differentiator satisfy the following

conditions introduced in [11] and [102] for fast and finite-convergence:

• The global upper bound L[i]
ρi is absolutely continuous with at least ultimate bounded

logarithmic derivative (|L̇[i]
ρi/L[i]

ρi | ≤Mi, for some constants Mi > 0) [11].

• Initially, the variable gain may have an arbitrary growth so that L̇[i]
ρi(x̂, t) ≥ 0 implies

into faster convergence rates for the differentiator [102].

This fact lead us to the second step of the proof. There exist two finite-time instants T1 > 0

and T2 > 0 such that (339) and (325) are satisfied, ∀t > max{T1,T2}. Then, the ideal

sliding variable is exactly estimated, i.e., Ŝ ≡ S and the relative degree compensation is

perfectly achieved. Moreover, from Lemma 1 (see Appendix) the ideal sliding mode Ŝ(t) ≡
S(t) ≡ 0 is achieved in finite time. Since S in (327) is the relative degree one output for

(319), it is possible to rewrite it into the normal form [106] such that the states of the

error system are ISS with respect to S, for a particular exponential class-KL function.

It can be shown reminding that L(s)Wm(s) = diag {(s+ γ1)−1, · · · , (s+ γm)−1}. From

(319) and (328), one gets Ẋe = AcXe +Bc(Ṡ +AmS), where Am = diag{−γ1, . . . ,−γm}.
Further, using the transformation Xe := X̄e +BcS, one has

˙̄Xe = Ac X̄e + (AcBc + AmBc)S , (349)

which clearly implies an ISS relationship from S to either Xe or X̄e since Ac is Hurwitz.

Thus, Xe and e = H0Xe tends exponentially to zero as well as the state ζ of the differen-

tiator, which is also driven by e. From (348), we conclude that all remaining signals are

uniformly bounded. �
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6.6 Chattering Alleviation

Although the sliding mode controllers are known for its robustness with respect to

parametric uncertainties and disturbances, the presence of chattering in the control signal

is frequently an issue. An alternative to alleviate chattering employing continuous control

signals is given by the B-MRAC. The B-MRAC is able to combine the good transient

and robustness of sliding mode controllers while maintaining the typical smoothness of

adaptive control.

6.6.1 Multivariable B-MRAC

The B-MRAC was originally proposed to deal with SISO plants [67] and only

recently its MIMO version was presented [105] for plants with relative degree one. In

this section, we consider the MIMO B-MRAC as in [104], which is deals with a further

extension to plants of arbitrary relative degree. The control law is given by

u(t) = θT (t)ω(t) (350)

where θ is an estimate of θ∗ provided by an adaptive law. Moreover, a modified regressor

matrix and vector parameter, respectively Ω and ϑ, are employed as

Ω(t) =


ω(t)

. . .

ω(t)

 , ϑ(t) = vec(θ) =


θ1(t)

...

θm(t)

 , (351)

with dimensions Ω ∈ RNm×n, ϑ ∈ RNm, being N the dimension of ω and θi is the i-th

column of parameter θ. Finally, the adaptation law is

ϑ̇(t) = −ϑ(t)σ − γΩ(t)Ŝ(t) , (352)

where Ŝ in (341) is the exact estimate of S given in (327) and σ generated by projection

σ =

0 , if |ϑ| < Mϑ or σeq < 0 ,

σeq , if |ϑ| ≥Mϑ and σeq ≥ 0 ,

(353)
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with

σeq = −γϑ
TΩŜ

|ϑ|2 , (354)

and Mϑ > |ϑ∗| is a constant. Thus, the adaptive control law can be rewritten as

u(t) = θT (t)ω(t) = ΩT (t)ϑ(t) . (355)

The control law (355) with adaptive law (352)–(354) is called B-MRAC in [67,68]

due to its similarity to the binary control given in [66] – in [107], such liaison between

adaptive and variable structure systems was named dual-mode. Indeed, in both cases,

the integral adaptation is applied in some invariant compact set, such as the finite ball

Mϑ for ϑ. In B-MRAC, by considering that |ϑ(0)| ≤Mϑ, the projection of update vector

can be understood geometrically as follows: if the term −γϑTΩŜ points outwards the

ball |ϑ| ≤ Mϑ, the update vector is projected onto the tangent plane of the sphere; if it

points inwards, the σ–factor is equal to zero and ϑ(t) moves to the interior of the ball,

according to the standard MRAC gradient adaptation law [16]. Then, it is straightforward

to prove that the closed ball with radius Mϑ is invariant, that is, |ϑ(t)| ≤Mϑ, ∀t ≥ 0. A

mathematical demonstration of that can be derived considering the following Lyapunov

function candidate

Vϑ =
1

2
ϑTϑ . (356)

Indeed, the time derivative of (356) along (352) results in

V̇ϑ = (σeq − σ)|ϑ|2 = 2(σeq − σ)Vϑ , (357)

and (σeq − σ) ≤ 0 for |ϑ| ≥ Mϑ, by virtue of (353) and (354). Thus, the set |ϑ| ≤ Mϑ is

positively invariant and therefore ϑ̃T ϑ̃ is uniformly bounded by a constant.

A similar regularity condition to (336) is directly satisfied as follows since the

boundedness of ϑ is guaranteed by the parameter projection (353)–(354). Recalling that

ϑ = vec(θ) is uniformly bounded by a constant, one can conclude that θ is also uniformly

bounded by a constant, such that, |θ| < θ̄. Then, the control law (355) satisfies inequality

|u| ≤ θ̄|ω(t)| ≤ k7||Xt||+ k8 . (358)
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This property is established writing |ω| ≤ k9|X| + k10 from (313), with k9 ≥
|Ω1| and k10 ≥ |Ω2r|, and reminding that r(t) is a uniformly bounded reference signal.

Then, we obtain the norm bound (358) from the norm bound for |ω|. Thus, the global

differentiator with dynamic gains given in (340) can indeed be constructed and its state

exactly surrogates the time derivatives of the signal e(t) in the variable Ŝ ≡ S (341),

after some finite time. From (328), it is easy to show that S(t) → 0 as t → +∞ since

L(s)Wm(s) is SPR, according to [16, Section 6.4.1]. Reminding that the error dynamics

(319) is ISS with respect to S(t), so one can conclude that Xe(t) and e(t) tend to zero at

least asymptotically.

6.6.2 A Bridge Between B-MRAC and UVC

A relationship between the UVC and B-MRAC can be established considering

increasing adaptation gains in B-MRAC. Following the steps given in [105], we consider

the simplified unit vector control law (342) with θnom = 0:

u = −%Sp
Ŝ

|Ŝ|
, (359)

with Ŝ in (341) and %(t) being its modulation function.

From adaptation law (352), one can write

γ−1ϑ̇ = −ϑσ̃ − ΩŜ , σ̃ = γ−1σeq , (360)

where σ̃ is a scalar and σeq is defined in (354). As the adaptation gain increases such that

γ →∞ (γ−1 → 0), ϑ is given as the solution of ϑσ̃ + ΩŜ = 0. From (354), we verify that

for ΩŜ 6= 0 the equation ϑ
(
ϑTΩŜ
M2
ϑ

)
= ΩŜ must be satisfied. Thus, ϑ is collinear with the

vector ΩŜ, and therefore ϑ can be expressed as ϑ = −Mϑ
ΩŜ

|ΩŜ| . Noting that |ΩŜ| = |ω||Ŝ|,
it follows that

ϑ = −Mϑ
Ω

|ω|
Ŝ

|Ŝ|
, (361)

where the negative sign is due to the fact that σ 6= 0, only if σeq > 0. Substituting (361)
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into (355) and since ΩTΩ = |ω|2, one has that

u = −Mϑ|ω|
Ŝ

|Ŝ|
, (362)

which is a UVC law with modulation function % = S−1
p Mϑ|ω|.

6.7 Simulation Example

6.7.1 Results with UVC

In order to illustrate the proposed control strategy, we consider a nonlinear plant

with nonuniform relative degree (ρ1 =2, ρ2 =3) described by (306), with

Ap=



−2 3 0 0 0

1 0 0 0 0

1 2 −6 −11 −6

0 0 1 0 0

0 0 0 1 0


,

BT
p =

1 0 0 0 0

0 0 1 0 0

 ,
Hp=

0 κ 0 κ 3κ

0 0 0 0 1


,

G(s)=

 κ(s+2)
(s−1)(s+1)(s+3)

κ
(s+1)(s+2)

1
(s−1)(s+1)(s+3)2

1
(s+1)(s+2)(s+3)

 ,

where the constant κ ∈ [4, 10] is uncertain and Kp =

κ κ

0 1

 is the linear subsystem

HFG matrix. The input disturbance is considered uncertain for control design and is

given by d(x)=
[
0.2 cos(t) sin(x2 x3)|x4| 1

2π

(
e−|x5||x1|+ |x2|

)]T
. This particular choice is

motivated by the example considered in [108]. The reference signal and model are chosen

as r=[sin(t) sin(0.5t)] [11(t)− 11(t− 20)] and Wm(s) = diag
{

1
(s+1)2

, 1
(s+1)2(s+2)

}
.

To perform the simulations, the actual parameter κ is set to 10, while κnom = 7 is

chosen for control purposes. For κnom = 7 and κ ∈ [4, 10], it follows that | (θnom − θ∗)T | ≤
2 and Assumption (A5) is satisfied with Sp = I. Then, in (342) the modulation function

%(t) is given by (326), with cd=2.25, |df |≤ d̂f and δ=1. The signal d̂f is obtained by the

FOAF described in (323), with kx = 0.2, kd = 1, cf = 5, λf = 0.5 and x̂ is a state-norm

observer given by (322), with c1 = 1.2, c2 = 2 and λx = 0.1.

Other design parameters are listed as follows: I/O filters (310): λ(s)=(s+2)2 and
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Figure 24 - Numerical simulations of UVC – to be continued...
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Figure 25 - Numerical simulations of UVC.
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ν= 3; L(s) = diag {(s+ 1), (s+ 1)2}; Knom
p = Kp with κ = 7; N

[1]
a = s2 + 2s + 1, N

[2]
a =

s3 + 3s2 + 3s+ 1, H
[1]
a = [2 1]T , H

[2]
a = [4 5 2]T , H̄

[1]
M = [−1 1]T , H̄

[2]
M = [4 − 2 1]T ; HOSM

differentiator (340): λ
[1]
0 =1.5, λ

[1]
1 =1.1 and L[1]

ρ1 (x̂, t) = 130|x̂|+10%+ |ym1|+2|ẏm1|+ |r1|;
λ

[2]
0 =3, λ

[2]
1 =1.5, λ

[2]
2 =1.1 and L[2]

ρ2 (x̂, t) = 26|x̂|+ %+ 2|ym2|+ 5|ẏm2|+ 4|ÿm2 |+ |r2|; note

that ym1 , ym2 and their respective derivatives can be found by employing a state space

implementation of the reference model. We consider the following plant initial conditions:

y1(0) = 1, ẏ1(0) = 2, y2(0) = 0.5, ẏ2(0) = −1, ÿ2(0) = 1. The remaining system initial

conditions are set to zero.

The Euler Method with step-size h=10−5 is used for numerical integration. Figure

24(a)-Figure 24(d) show good tracking performance with the control signals seen in Figure

24(b). The estimates given by the HOSM differentiatores are compared to estimated

variables ej(t) and ėj(t) in Figure 24(e)–Figure 24(h), while the estimate for ë2(t) is seen

in Figure 25(a). In Figure 25(b) to Figure 25(d), we also show the time-history of the

differentiator gains as well as the state-norm observer. Unlike other publications in the

literature which applies strictly increasing gains [13,49], our variable gains are decreasing

with the state variables.

6.7.2 Results with Multivariable B-MRAC

To illustrate the performance of the B-MRAC strategy, we revisit the previous

example. The parameter upper bound is Mϑ = 12 and the adaptation gain is initially set

to γ = 40. The error signals and tracking performance are seen in Figure 26(a), Figure

26(c) and Figure 26(d), respectively, whereas the continuous control signals of B-MRAC

are given in Figure 26(b). It is possible to note the fast convergence and good transient

behavior achieved with the proposed smooth binary approach employing a projection-

based adaptation law, as illustrated in Figure 27.

To illustrate the transition to UVC, the previous simulation is repeated with

γ = 100 and γ = 2000. In Figs. Figure 28 and Figure 29 is possible to note that the

control signals resemble the ones obtained in discontinuous UVC, as the adaptation gain

γ increases.
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Figure 26 - Numerical simulations of B-MRAC with γ = 40.

Figure 27 - Projection-based adaptive law in B-MRAC: adapted parameters (ϑ), para-
meters norm (|ϑ|), and its upper bound (Mϑ).
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Figure 28 - Control signals for B-MRAC with γ = 100.
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Figure 29 - Control signals for B-MRAC with γ = 2000.
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CONCLUSION

In Chapter 1, the problem of global differentiation and its application to output-

feedback has been addressed. Instead of using a sufficiently large constant bound or

strictly increasing time-varying gains, our differentiator applies for dynamic gains updated

by a state-norm observer using only input-output information. In particular, such gains

become necessarily large in order to guarantee the globality and then become smaller

as possible under the control action, decreasing with the system states and improving

the precision performance of the differentiator. Output-feedback sliding mode controllers

based on the global differentiator are proposed for arbitrary relative degree plants with

nonlinear disturbances and uncertainties. Both matched and unmatched disturbances

were allowed. The former can grow inclusive with the unmeasured state. Uniform global

stability and robust exact output tracking of a desirable reference model is guaranteed.

In Chapter 2, the problem of global adaptive and exact differentiation for output

feedback has been solved. The gains of the proposed HOSM differentiator are dynamically

updated according to the norm bound for the unmeasured state provided by a hybrid state-

norm observer driven by a switching monitoring function. First order output-feedback

sliding mode controller employing the adaptive differentiator is proposed for arbitrary

relative degree plants with nonlinear matched disturbances/uncertainties with unknown

and state-dependent bounds. The developed strategy assures ideal sliding modes in theory

(and chattering alleviation in practice) as well as global stability results. Robust exact

trajectory tracking is illustrated by simulations. An engineering application on the wing

rock control problem for aircraft with high angles of attack was solved by means of the

proposed control algorithm.

In Chapter 3, we have generalized Variable Gain Super-Twisting algorithm (VGSTA)

using output feedback. The inclusion of the (non) homogeneous HOSM differentiator with

dynamic gains in the control loop was the key element to achieve this extension. The li-

mitation on conventional super twisting algorithm (STA) application restricted to relative

degree one systems is eliminated. The gains of the differentiator and the controller were

adapted according to the norm bound estimate for the unmeasured state provided by a

norm observer to tackle the gain overestimation problem using only input-output informa-

tion. The proposed gains are decreasing together with the system states and, consequently,
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the precision of the tracking is growing. In practice, if the gains decrease, the sensitivity

of the overall closed-loop system is reduced with respect to noise and signal sampling.

The proposed output-feedback VGSTA can substitute the discontinuous first-order sli-

ding mode control by an absolutely continuous controller ensuring chattering reduction,

while guaranteeing global/semi-global stability properties and the exact compensation of

uncertainties/disturbances for a class of systems with arbitrary relative degree. The main

advantages of the proposed design were verified by numerical simulations concerning the

trajectory tracking problem in an academic example and with stabilization experiments

on a seesaw real-world control system as well.

In Chapter 4, the problem of adaptive differentiation for output-feedback has been

solved for distinct families sliding mode controllers. The differentiator gains are dyna-

mically updated according to the norm bound for the unmeassured state provided by

a state-norm observer. The adaptive differentiator are proposed for arbitrary relative

degree plants with nonlinear matched and unmacthed disturbances/uncertainties. The

developed strategies assure ideal sliding modes in theory (and chattering alleviation in

practice) as well as global or semi-global stability results. Robust exact trajectory tracking

is illustrated by means of simulations.

In Chapter 5, the global real-time differentiation issue and its application to obtain

output-feedback model reference adaptive controllers for uncertain plants with arbitrary

relative degree have been explored in the present contribution. The proposed differentiator

uses variable gains which are updated by a state-norm observer based on input-output

filters. Global asymptotic stability of the overall closed-loop system was demonstrated

and exact output tracking of a desired reference model is guaranteed. The generalization

of the proposed methodology for other adaptation laws using parameter projection and

leakage tools were also considered. Numerical results have shown the simplicity of the

proposed approach when compared to classical adaptive controllers for higher relative

degrees. An application to adaptive impedance force control for bilateral teleoperation

was also addressed.

In Chapter 6, a new output feedback sliding mode tracking controller has been

proposed for uncertain MIMO plants with nonuniform arbitrary relative degree in the

presence of nonlinear state-dependent growing disturbances. The unit vector controller is

based on a global multivariable HOSM differentiation scheme, which employs state-norm
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observers to adapt the differentiator gains. Global exponential stability is guaranteed as

well as ultimate exact output tracking of a reference model. The scheme allows ideal

sliding modes in theory such that chattering is precluded in the ideal case. Indeed, the

estimated sliding variable provided by the global MIMO HOSM differentiator, which

drives the unit vector function, becomes identically zero after some finite time. As an

alternative for chattering alleviation in practical scenarios under real-life imperfections

such as measurement noise, unmodeled dynamics and switching delays, we employ binary

control concepts to replace the unit vector function in the control law, thus obtaining

a continuous control signal. Consistent simulation results are provided to support the

theoretical developments.
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FUTURE WORKS

Regarding the future directions, one can point out the extension of our results

to more general classes of multivariable systems and the obtainment of new and general

nonlinear sliding surfaces which allow us to conclude finite-time convergence for the trac-

king error signal rather than exponential one. The latter topic is really hardy since only

the existence of such general nonlinear sliding surfaces were proved in the current litera-

ture, but the design of them were not presented yet. Some advances were restricted to

finite-time stabilization of linear plants represented by a chain of integrators, as discussed

in [95].



158

SCIENTIFIC PRODUCTION

I started my academic life at State University of Rio de Janeiro (UERJ) in 2009,

as an undergraduate student in the bachelor course of Electrical Engineering. Since 2011,

I have been advised by Professor Tiago Roux Oliveira in his research line, working on the

fields of: control and synchronization of complex systems, estimation of nonlinear systems,

adaptive control, extremum seeking and sliding mode control. I had the opportunity of

participating in several international and national scientific events and I have published

over fifteen archived journal and conference papers.

Bibliographical Production

Articles in Scientific Journals

1. OLIVEIRA, T. R. ; RODRIGUES, V. H. P. ; FRIDMAN, L. M. . Generalized

Model Reference Adaptive Control by means of Global HOSM Differentiators. IEEE

Transactions on Automatic Control.

2. OLIVEIRA, T. R. ; RODRIGUES, V. H. P. ; ESTRADA, A. ; FRIDMAN, L. M.

. Output-Feedback Variable Gain Super-Twisting Algorithm for Arbitrary Relative

Degree Systems. International Journal of Control.

3. RODRIGUES, V. H. P. ; OLIVEIRA, T. R. . Global Adaptive HOSM Diffe-

rentiators via Monitoring Functions and Hybrid Norm-State Observers for Output

Feedback. International Journal of Control.

4. RODRIGUES, V. H. P. ; OLIVEIRA, T. R. ; CUNHA, J. P. V. S. . Globally

Stable Synchronization of Chaotic Systems Based on Norm Observers Connected in

Cascade. IEEE Transactions on Circuits and Systems. II, Express Briefs, v. 63, p.

883-887, 2016.

Complete works published in proceedings of conferences

1. OLIVEIRA, T. R. ; RODRIGUES, V. H. P. ; ESTRADA, A. ; FRIDMAN, L. M.

. Adaptive HOSM Differentiator for Global/Semi-Global Output Feedback. In: 20th

World Congress of the International Federation of Automatic Control (IFAC’2017),

2017, Toulouse.



159

2. RODRIGUES, V. H. P.; OLIVEIRA, T. R. . Monitoring Function for Switching

Adaptation in Control and Estimation Schemes with Sliding Modes. In: 2017 IEEE

Conference on Control Technology and Applications, 2017, Kohala Coast.

3. OLIVEIRA, T. R.; RODRIGUES, V. H. P. . Generalização do Controle Adapta-

tivo por Modelo de Referência Através de Diferenciadores Globais. In: XIII Simpósio

Brasileiro de Automação Inteligente (SBAI’2017), 2017, Porto Alegre.

4. OLIVEIRA, T. R. ; KRSTIC, M. ; RODRIGUES, V. H. P.. Busca Extremal Ba-

seada no Método de Newton na Presença de Atrasos. In: XXI Congresso Brasileiro
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