

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Engenharia

Rafael Wajnsztajn

Projeto de Redes Neurais para determinar os ganhos PID de um Sistema de Posicionamento Dinâmico de uma embarcação

> Rio de Janeiro 2012

Rafael Wajnsztajn

Projeto de Redes Neurais para determinar os ganhos PID de um Sistema de Posicionamento Dinâmico de uma embarcação

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Eletrônica da Universidade do Estado do Rio de Janeiro. Área de concentração: Sistemas Inteligentes e Automação.

Orientador: Prof. Dr. Luiz Biondi Neto Prof. Dr. Eduardo Aoun Tannuri

CATALOGAÇÃO NA FONTE

UERJ / REDE SIRIUS / BIBLIOTECA CTC/B

W145	Wajnsztajn, Rafael. Projeto de redes neurais para determinar os ganhos PID de um sistema de posicionamento dinâmico de uma embarcação. / Rafael Wajnsztajn 2012. 96 f.	
	Orientadores: Luiz Biondi Neto; Eduardo Aoun Tannuri. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia.	
	1. Engenharia Eletrônica. 2. Redes neurais (computação). I. Biondi Neto, Luiz. II. Tannuri, Eduardo Aoun. III. Universidade do Estado do Rio de Janeiro. IV. Título.	
	CDU 004.032.26	

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta tese, desde que citada a fonte.

Assinatura

Rafael Wajnsztajn

Projeto de Redes Neurais para determinar os ganhos PID de um Sistema de Posicionamento Dinâmico de uma Embarcação

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Eletrônica da Universidade do Estado do Rio de Janeiro. Área de concentração: Sistemas Inteligentes e Automação.

Aprovado em: 14 de fevereiro de 2012.

Banca Examinadora:

Prof. Dr. Luiz Biondi Neto (Orientador) Faculdade de Engenharia – UERJ

Prof. Dr. José Franco Machado do Amaral Faculdade de Engenharia – UERJ

Prof. Ph.Dr. Pedro Henrique Gouvêa Coelho Faculdade de Engenharia – UERJ

Prof. Dr. Eduardo Aoun Tannuri (Orientador) Universidade de São Paulo – USP

Prof.^a Dr.^a Lídia Angulo Meza Universidade Federal Fluminense – UFF

Rio de Janeiro

2012

DEDICATÓRIA

Aos meus pais, irmãs e namorada, que nunca deixaram de me motivar e acreditaram desde o início até o final desta trajetória. Aos meus avós que não puderam estar presentes fisicamente, mas tenho certeza que estão sorrindo com mais uma vitória.

AGRADECIMENTOS

A Deus por ter me dado paz e sabedoria para enfrentar todos os problemas;

Aos meus queridos pais, Henrique Mauro e Geni Malca e as minhas irmãs Fernanda e Simone, por todo suporte, incentivo e conselhos durante toda esta trajetória;

A minha namorada Renata pela compreensão dos momentos em que precisei me ausentar para me dedicar e alcançar meu objetivo;

Aos meus amigos que sempre compreenderam a importância de realizar o Mestrado;

Ao meu amigo e professor Jomar pelos conselhos e ensinamentos de quem recebo até os dias de hoje, e a sua família pela paciência dos momentos em que se dedicou para me ajudar;

À Universidade do Estado do Rio de Janeiro, minha segunda casa por alguns anos;

Ao meu orientador Luiz Biondi Neto e hoje considerado como um verdadeiro amigo, pelos conselhos, e ensinamentos e durante essa jornada, assim como pela extrema paciência;

Ao meu co-orientador Eduardo Aoun Tannuri que embora distante fisicamente atendeu todas as minhas expectativas me introduzindo num mundo novo e extraordinário do Sistema de Posicionamento Dinâmico. Não posso esquecer da recepção calorosa ao me receber na USP ao reservar dias me explicando a utilizar o simulador de Posicionamento Dinâmico;

A Chemtech por acreditar na importância do desenvolvimento continuado de seus funcionários.

RESUMO

Wajnsztajn, Rafael. **Projeto de Redes Neurais para determinar os ganhos PID de um Sistema de Posicionamento Dinâmico de uma Embarcação**. 2012. 96f. Dissertação (Mestrado em Engenharia Eletrônica) – Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2012.

As sintonias dos Controladores PID existentes em um Sistema de Posicionamento Dinâmico, utilizado em embarcações e plataformas a fim de manter uma posição fixa em alto-mar ou de realizar determinada manobra, sempre tem sido um desafio a ser vencido. Trata-se de uma tarefa demorada, dependente das condições ambientais e com um elevado custo financeiro, uma vez que as horas dedicadas do profissional habilitado são caras. Além disso, a embarcação deve-se manter estabilizada durante o período de tempo no qual determinada função é realizada, como por exemplo, perfuração, abastecimento, ou lançamento de dutos. Foi utilizado um software para simular o posicionamento de uma embarcação em alto-mar sob diversas condições de vento e correnteza, com o qual foi possível verificar a influência da sintonia dos parâmetros PID do Controlador no desempenho do sistema de controle. O Sistema dinâmico abordado possui um comportamento não linear e sujeito a fortes distúrbios não medidos, o que são apenas alguns exemplos de questões avaliadas deste trabalho. Neste contexto, foram projetadas Redes Neurais com o intuito de aprimorar a técnica utilizada para determinar os ganhos de um dos Controladores PID de um Sistema de Posicionamento Dinâmico. Os melhores resultados foram obtidos através da avaliação de desempenho de diversas simulações de Redes Neurais que revelam a viabilidade da implementação da sintonia automática de Controladores em Sistemas de Posicionamento Dinâmico.

Palavras-Chave: PID, Redes neurais, Sistema de posicionamento dinâmico.

ABSTRACT

The tuning of PID controllers of a Dynamic Positioning System used on vessels and platforms in order to maintain a fixed position in offshore or to perform a maneuver has always been a challenge to be overcome. It is a time consuming task, which depends on the environmental conditions and has a high financial cost, since the hours of dedicated qualified professional are expensive. In addition, the vessel must keep position during the period of time that the operation is performed, for example, drilling, supply or pipe launching. It was used a software to simulate the positioning of a vessel under different conditions of wind, wave and current conditions, and it was possible to verify the influence of the tuning parameters of PID controller in the control system performance. Some questions considered in this work are the non-linear behavior of the dynamic system studied and its sensibility to strong unmeasured disturbances. In this context, neural networks were designed to improve the technique used to determine the gains of the PID controllers of a Dynamic Positioning System. The best results were obtained through the performance evaluation from several simulations of neural networks that demonstrated the feasibility of implementation of automatic tuning procedures for the controllers of Dynamic Positioning System.

Keywords: PID, Neural Networks, Dynamic Positioning System.

LISTA DE FIGURAS

Figura 1 - 🛝	/isão Geral do SPD de uma embarcação	15
Figura 2 - D	Diagrama de blocos do controle de um Processo	18
Figura 3 - F	Resposta dinâmica de uma malha de controle gerada no Matlab®	21
Figura 4 - F	Representação de um neurônio biológico	23
Figura 5 - N	Neurônio artificial	24
Figura 6- F	Função degrau	25
Figura 7 – F	Função sigmóide	25
Figura 8 – F	Função tangente hiperbólica	26
Figura 9 – F	Função linear	26
Figura 10 – F	Função simétrica	26
Figura 11- F	Função linear positiva	27
Figura 12 - F	Função linear com saturação	27
Figura 13 – F	Função de base radial	27
Figura 14 – T	Fopologia de uma rede MLP	28
Figura 15 – D	Desempenho de uma RNA	30
Figura 16 – A	Algoritmo de Retropropagação de Erro	32
Figura 17 - D	Diagrama de blocos do Comitê de Redes Neurais	36
Figura 18 - D	Diagrama Esquemático de um Sistema de Posicionamento Dinâmico	38
Figura 19 - 🗸	/ariáveis de movimento de uma embarcação marítima	39
Figura 20 - C c	CSO Deep Blue - maior navio do mundo atuando em serviços construção e lançamento de linhas	de 41
Figura 21 - L	ançamento de Foguete Telstar 18	41
Figura 22 - F	Plataforma da Petrobras P-56	42
Figura 23 – D	Diagrama de blocos do SPD	43
Figura 24 – ⊦	Hélice principal	44
Figura 25 – F	Propulsor em túnel BT-400	44
Figura 26 – F	Propulsor azimutal	45

Figura 27 – Configurações típicas de propulsores45
Figura 28 - Modelo da RNA adaptada ao SPD da Embarcação47
Figura 29 - Simulador do SPD visto por meio de diagramas de blocos no Simulink 49
Figura 30 - Bloco de Controle do Simulador de SPD no Simulink responsável pelos PIDs que atuam na força a ser aplicada nos propulsores49
Figura 31 - Bloco de Dinâmica do Simulador de SPD no Simulink responsável pela comutação dos controladores PIDs com o restante do Sistema50
Figura 32 – Barcaça genérica DP51
Figura 33 - Representação da barcaça sujeita as condições ambientais em surge .52
Figura 34 - RNA com 1 camada escondida e 1 camada de saída
Figura 35 - RNA com 2 camadas escondidas e 1 camada de saída56
Figura 36 - RNA com 3 camadas escondidas e 1 camada de saída57
Figura 37 – Diagrama de Blocos da Modelagem58
Figura 38 – Ganho proporcional para V=0m/s e Hs=0m61
Figura 39- Ganho proporcional para V=15m/s e Hs=2m61
Figura 40 – Ganho integral para V=10m/s e Hs=0m62
Figura 41- Ganho integral para V=15m/s e Hs=2m63
Figura 42 - Ganho derivativo para V=0m/s e Hs=0m63
Figura 43 - Ganho derivativo para V=10m/s e Hs=0m64
Figura 44 - Saído do Controlador com os ajustes de ganhos realizados para condições ambientais nula de vento, correnteza e onda65
Figura 45 - Resposta do Controlador com ts=295 e ganhos P=2000, I=120 e D=410000066
Figura 46 - Resposta do Controlador com ts=295 e ganhos P=2000, I=120 e D=410000067
Figura 47 - Resposta do Controlador com ts=352 e ganhos P=10000, I=100 e D=4100000 para correnteza de 1m/s68
Figura 48 - Resposta do Controlador com ts=180 e ganhos P=17000, I=140 e D=4100000 para correnteza de 1m/s68
Figura 49 - Resposta do Controlador com ts=347 e ganhos P=17000, I=130 e D=4100000 para correnteza de 1,25m/s69
Figura 50 - Resposta do Controlador com ts=173 e ganhos P=32000, I=220 e D=4100000 para correnteza de 1,25m/s69

- Figura 51 Resposta do Controlador com ts=165 e ganhos P=1900, I=20 e D=6200000 para correnteza de 0,35m/s e vento de 20m/s......70
- Figura 52- Resposta do Controlador com ts=150 e ganhos P=120000, I=40 e D=4500000 para correnteza de 1,25m/s e vento de 20m/s......71

LISTA DE TABELAS

Tabela 1 -	Primeiros navios DP contratados pela Petrobras operando no Brasil40
Tabela 2 -	Características principais da barcaça51
Tabela 3 -	Variáveis de entrada utilizadas para RNA54
Tabela 4 -	Variáveis de saída utilizadas para RNA54
Tabela 5 -	Parâmetros utilizados para condições ambientais59
Tabela 6 -	Novos parâmetros utilizados para condições ambientais60
Tabela 7 -	Variáveis de entrada utilizadas para RNA60
Tabela 8 -	Erro percentual da sintonia da RNA projetada considerando novas condições ambientais apresentadas74
Tabela 9 -	Simulações resultante do SPD utilizadas para o Projeto da RNA81
Tabela 10 ·	Novas simulações resultantes do SPD utilizadas para comprovar a eficiência da RNA96

LISTA DE SIGLAS

DP	Dynamic Positioning
FPSO	Floating Production Storage and Offloading
MLP	Multilayer perceptron
PID	Proporcional Integral Derivativo
RNA	Rede Neural Artificial
ROV	Remotely Operated Vehicle
SPD	Sistema de Posicionamento Dinâmico

SUMÁRIO

	INTRODUÇÃO14
1	FUNDAMENTOS TEÓRICOS18
1.1	Controlador PID
1.1.1	Controle proporcional18
1.1.2	Controle proporcional e derivativo19
1.1.3	Controle proporcional, integral e derivativo20
1.1.4	Sintonia de controladores PID20
1.2	Redes neurais artificiais22
1.2.1	Histórico22
1.2.2	Modelo de um neurônio artificial23
1.2.3	Funções de ativação25
1.2.4	Topologia da RNA27
1.2.5	Técnicas de aprendizagem28
1.2.6	Validação cruzada29
1.2.7	Algoritmo de retropropagação de erro (backpropagation)
1.2.8	Método do comitê de redes neurais36
1.3	Sistema de posicionamento dinâmico (SPD)
1.3.1	Histórico
1.3.2	Vantagens, desvantagens e aplicabilidade40
1.3.3	Estratégia de Controle do SPD43
2	MODELAGEM
2.1	Simulação das condições ambientais exercidas na embarcação e
	sintonia do controlador48
2.1.1	Simulador de SPD48
2.1.2	Características da embarcação utilizada50
2.1.3	Simulação das condições ambientais exercidas na embarcação51

2.2	Projeto da rede neural	54
2.2.1	Preparação dos dados	55
2.2.2	Topologia	56
3	METODOLOGIA	58
4	RESULTADOS E DISCUSSÕES	61
5	CONCLUSÃO	76
	REFERÊNCIAS	77
	APÊNDICE A	81
	APÊNDICE B	96

INTRODUÇÃO

A utilização de plataformas flutuantes de perfuração do tipo navio ou plataformas flutuantes semi-submersíveis para prospecção tem sido mais frequente devido à descoberta de novos campos petrolíferos em águas profundas e cada vez mais distantes do Continente.

E possível embarcações ancorarem em águas de profundidade superiores a 1000 (mil) metros, todavia, quando a profundidade excede 500 (quinhentos) metros, a viabilidade econômica é muito afetada, sendo necessário considerar alternativas. O custo e o tempo necessário para o lançamento de diversas âncoras (dependendo da embarcação e da situação), juntamente com os gastos associados dos rebocadores no manuseio das âncoras são muito elevados. A falha de qualquer uma das âncoras quando as mesmas são tensionadas faz com que esses custos aumentem sobremaneira, sendo necessário recorrer ao "piggy-backing" ("piggy backing" é quando uma segunda âncora é colocada atrás da primeira, içando uma e trazendo-a de volta). Operando em águas cada vez mais profundas, estes sistemas de amarração passam a exigir equipamentos ainda mais pesados e, para o seu manuseio, de barcos cada vez mais potentes, tornando antieconômico o seu uso. (BRAY, 2003).

A maioria das embarcações pertencentes à área de Óleo e Gás e destinadas às atividades de perfuração, e também de alívio de óleo, abastecimento, lançamento de dutos, e outras, é dotada de Sistema de Posicionamento Dinâmico (SPD).

A barcaça, uma vez ancorada, apresenta movimento devido à excitação ambiental e à flexibilidade inerente à extensão da amarração, todavia há limitação na capacidade de manobra. Se uma mudança de posição é necessária, então algumas âncoras devem ser içadas e relançadas. Pequenas mudanças de posição podem ser realizadas por meio de guincho (cabrestante), ajustando o comprimento de linha, mas há uma falta de precisão nesta tarefa. Da mesma forma, as mudanças de posição são limitadas. Outros problemas que podem afetar navios, balsas, plataformas, sondas usando amarras e âncoras são as instalações submersas existentes, como por exemplo, tubulações. Esses riscos podem existir em qualquer profundidade de água, e influenciarão a escolha do método de posicionamento, mesmo quando o sistema de amarração não for o mais recomendado. Em alguns campos existem restrições parciais ou totais sobre a utilização de âncoras e amarras. (BRAY, 2003).

Assim surgiu a necessidade de um sistema de posicionamento independente em relação à profundidade da lâmina d'água, dado pelo SPD. Seus principais objetivos de aplicação são de manter a embarcação em uma determinada posição ou fazer com que realize determinada trajetória. Para isso o SPD deverá ser dotado de um sistema de controle capaz de compensar as perturbações geradas pela variação das condições ambientais encontradas em alto mar como vento, correnteza e ondas através da ação dos propulsores instalados no casco da embarcação, que geram forças e momentos para contrabalançar as forças ambientais de forma a manter a embarcação estável sobre a locação ou determinada trajetória.

A Figura 1 ilustra em uma visão geral, uma embarcação dotada de um SPD.

Figura 1 - Visão Geral do SPD de uma embarcação (Fonte: Tannuri, 2009)

Muitos sistemas de controle dependem de algoritmos do tipo PID (proporcional-integral-derivativo). Esses algoritmos de controle tradicionais não requerem um modelo matemático do movimento do navio, e nem de um método de solução para resolver as equações de movimento e prever a posição (incluindo a orientação) da embarcação devido às condições ambientais. A ação de controle gerada por um controlador PID é proporcional ao erro (a diferença entre a previsão e

o valor desejado) na posição do navio (o termo proporcional), sua taxa de variação do erro (o termo diferencial) e a acumulação do erro (o termo integral). A eficácia e o desempenho do controlador PID depende da velocidade computacional da predição e fortemente da escolha das constantes proporcional, integral e diferencial.

Atualmente, realizar a sintonia dos controladores PID em SPDs é considerado um grande desafio por se tratar um procedimento heurístico, uma vez que o sistema possui comportamento não linear e está sujeito a condições ambientais variáveis no tempo e não medidas. A sintonia é realizada com a embarcação em alto-mar, dependendo muitas vezes da experiência do operador podendo assim consumir tempo, energia e material, sendo que muitas vezes não se chega a resultados satisfatórios em todas as condições ambientais em função da limitação de desempenho do procedimento empreendido em tais ajustes.

A pesquisa na área de redes neurais artificiais (RNA), redes neuronais ou usualmente denominada "redes neurais" tem sido motivada desde o começo pelo reconhecimento de que o cérebro humano processa informações de uma forma inteiramente diferente do computador digital convencional. O cérebro é um computador (sistema de processamento de informação) altamente complexo, não linear e paralelo. (HAYKIN, 2001).

A área de Redes Neurais tem recebido atenção especial por trazer a expectativa de resolver problemas de grande complexidade de forma simples (Haykin, 2001). A aplicação em controle de sistemas dinâmicos e identificação de sistema têm sido realizadas com sucesso. (DEMUTH; HAGAN, 1999).

Em Tannuri (2002) é mencionado um grande impasse sob o ponto de vista de controle do SPD, relativo à compensação dos esforços ambientais. A "janela ambiental" para a qual o desempenho é satisfatório é bastante restrita. Como o ajuste dos parâmetros é feito, normalmente, por testes no mar, é frequente a necessidade de novos testes para corrigir problemas de desempenho detectados durante a operação.

A investigação proposta por este trabalho vem determinar através de RNAs, os parâmetros de controle para condições ambientais em que o SPD não foi projetado.

É utilizado um Simulador de SPD desenvolvido em ambiente computacional Matlab® versão 7.6.0.324 (R2008a) (Tannuri, 2002), de forma off-line, para emular manobras e valores aproximados de uma embarcação do tipo barcaça dotada de SPD, cuja operação é destinada ao lançamento de dutos e instalação de cargas em plataformas, e também para simular as condições ambientais.

No primeiro capítulo desta dissertação são apresentadas as considerações gerais sobre o problema, a estrutura do trabalho e o objetivo da dissertação.

O capítulo 1 aborda os fundamentos teóricos utilizados, abordando Controle PID, Sistema de Posicionamento de Dinâmico de uma Embarcação, Redes Neurais e suas possíveis topologias.

No capítulo 2 são discutidos os procedimentos para realização das simulações e as arquiteturas de RNAs utilizadas.

O capítulo 3 apresenta a metodologia aplicada.

O capítulo 4 consiste na apresentação dos resultados obtidos e discussões.

O capítulo 5 é composto por considerações finais e sugestões para trabalhos futuros.

No Apêndice A e B são apresentadas as sintonias do controlador de surge resultantes das simulações das condições ambientais realizadas no simulador de Posicionamento Dinâmico.

Objetivo do trabalho

No sentido de aprimorar o método utilizado para determinar os ganhos do Controlador PID de um SPD, este trabalho utiliza o Projeto de Redes Neurais.

O estudo considera apenas o movimento de uma barcaça no eixo *x*, pois as análises dos outros movimentos utilizados no controle do SPD são análogas, assim como a assim como a sintonia dos respectivos controladores e o projeto das RNAs.

1 FUNDAMENTOS TEÓRICOS

1.1 Controlador PID

De acordo com K.J.Astrom e T.Hagglund (2001), o controlador PID é de longe a forma mais dominante de realimentação em uso hoje. Mais de 90% de todas as malhas de controle são do tipo PID.

O princípio de funcionamento de um controlador PID baseia-se em calcular o "erro" (E(s)) entre a sua variável controlada (B(s)) e o seu valor desejado (Ref(s)) ("setpoint"), e em função deste erro gerar um sinal de controle, de forma a eliminar esta discrepância. Ele é uma combinação dos modos de controle proporcional (P), integral (I) e derivativo (D).

O diagrama de blocos da Figura 2 ilustra um sistema típico de controle ($G_c(s)$) de uma planta de processo (G(s)).

Figura 2 - Diagrama de blocos do controle de um Processo (Fonte: adaptado de Amaral et al, 2001)

1.1.1 Controle proporcional

Considerando o diagrama de blocos representado na Figura 2 e G_c como sendo o controle proporcional P, a relação entre a sua saída u(t) e o sinal de erro e(t) no domínio do tempo é dada por:

$$u(t) = P x e(t) + u0...$$
 (1)

Onde:

u0 é o valor inicial

No domínio da frequência, a Equação 1 pode ser expressa como:

$$U(s) = P x E(s)$$
 (2)

Neste tipo de controle, o controlador G_c entrega energia ao processo com valor proporcional a diferença entre a referência ("set point") e o valor atual da variável de processo.

1.1.2 Controle proporcional e derivativo

Segundo Silva (2000), a resposta de uma planta, em nosso caso G (Figura 2); possui uma inércia com relação a variações nas variáveis de entrada. A combinação da ação derivativa com a ação proporcional acelera a dinâmica do processo atuando como uma antecipação da ação de controle.

Considerando o diagrama de blocos representado na Figura 2 e Gc como controle proporcional e derivativo (D $\frac{de(t)}{dt}$), a relação entre a sua saída e o sinal de erro no domínio do tempo é dada por:

$$u(t) = P x e(t) + D \frac{de(t)}{dt}$$
(3)

No domínio da frequência, a equação 4 pode ser expressa como:

$$U(s) = (P + Ds) \times E(s)$$
(4)

em que D (ganho derivativo), relaciona-se ao período de tempo antecipado pela ação derivativa relativamente à ação proporcional.

Conforme apresentado na equação 4, este controlador acrescenta um zero ao sistema, o que tende a deixar a resposta muito acentuada para componentes de alta frequência, tornando o sistema mais sensível.

1.1.3 Controle proporcional, integral e derivativo

Considerando o diagrama de blocos representado na Figura 2 e Gc como controle proporcional, integral e derivativo $P \times I \times \int \mathbb{E}[e(t)dt]$, a relação entre a sua saída e o sinal de erro no domínio do tempo é dada por:

$$u(t) = P \times e(t) + D \frac{de(t)}{dt} + I \times \int e(t)dt$$
(5)

A função de transferência Gc descrita na equação 6 representa o algoritmo de controle PID no domínio da frequência e pode ser expressa por:

$$G_{c}(s) = P + \frac{I}{s} + Ds$$
(6)

1.1.4 Sintonia de controladores PID

O principal critério de sintonia desejado para qualquer malha de controle é a estabilidade. (CAMPOS; TEIXEIRA, 2006).

Um dos principais problemas encontrados no desempenho de SPDs baseados em controle do tipo PID é o ajuste dos ganhos, pois as variações do comportamento dinâmico da embarcação estão sujeitas as mudanças das condições ambientais e não linearidades não consideradas no projeto.

Existe uma grande variedade de métodos de ajustes de controladores PID, entretanto todos dependendo do conhecimento da dinâmica da planta do processo. Podendo ser citados: Ziegler e Nichols, Método CHR, Método da Integral do Erro, Método do Modelo Interno (CAMPOS; TEIXEIRA, 2006). Todavia, a aplicação destes métodos é recomendada para plantas cujo comportamento pode ser tratado como linear o que não é o caso deste trabalho devido a grande variação das condições ambientais. Outra técnica de grande importância e aplicada com sucesso em um problema similar ao investigado neste trabalho é a de alocação de pólos em malha fechada (MAZZILLI; TANNURI, 2010).

Para ilustrar alguns critérios de desempenho que podem ser usados para a sintonia de controladores do tipo PID utilizaremos a Figura 3 como exemplo (CAMPOS; TEIXEIRA, 2006):

Figura 3 - Resposta dinâmica de uma malha de controle gerada no Matlab®

Onde:

- A/B é o menor sobre valor ou "overshoot" possível.
- C/A é a razão de declínio.
- Menor tempo de subida T_S
- Menor tempo de assentamento T_A possível

Neste trabalho, utilizamos o overshoot e o tempo de assentamento que denominaremos respectivamente de Mp e ts como critérios para definir o melhor ajuste. A seção 2.1.3 apresenta detalhadamente a escolha destes índices de desempenho.

1.2 Redes neurais artificiais

1.2.1 Histórico

As RNAs surgiram com a idéia de criar um paradigma parar imitar o modo de processamento do cérebro humano "copiando a sua estrutura".

O presente trabalho utiliza redes de Múltiplas Camadas Alimentadas Adiante (feedforward), considerada uma importante classe de redes neurais. Estas redes também são conhecidas como Perceptrons de múltiplas camadas (MLP, multi-layer perceptron).

Os MLPs têm sido aplicados com sucesso para resolver diversos problemas difíceis, através do treinamento de forma supervisionada com um algoritmo muito popular conhecido como algoritmo de retropropagação de erro (error back-propagation).

Podemos considerar como percursores da neurocomputação, o neuroanatomista e psiquiatra Warren McCulloch e o matemático Walter Pitts, com o desenvolvimento do primeiro modelo neural fruto do trabalho publicado onde é realizada uma analogia entre células nervosas vivas e a computação (McCulloch; Pitts, 1943).

Entre os anos de 1940 a 1970, diversos trabalhos significativos foram publicados como: *The General and Logical Theory of Automata*, *Cybernetics*, *The Organization of Behavior, Design for a Brain: The Origin of Adaptive Behavior, Test on a cell assembly theory of the action of the brain, using a large digital computer.* (Lara, 2000).

Entretanto, foi apenas a partir da década de 80 que ocorreu um grande interesse acadêmico pela área de Redes Neurais devido ao surgimento de computadores mais rápidos e poderosos, facilitando a implementação e o desenvolvimento, e também, com novos modelos neurais, como o proposto por Hopfield (1982) e Kohonen (1982) e de algoritmos de aprendizado mais poderosos (Haykin, 2001). O modelo do neurônio artificial elaborado por Warren McCulloch e válido até os dias de hoje é uma estrutura lógico-matemática aproximada que procura simular a forma, o comportamento e as funções de um neurônio biológico.

No neurônio biológico, o axônio é responsável pela comunicação com outros neurônios, formando sinapses principalmente com a árvore de dendritos. Podemos observar na Figura 4 a ilustração do neurônio do cérebro humano.

Figura 4 - Representação de um neurônio biológico

(Fonte: LNCC)

No neurônio artificial, os dendritos equivalem às entradas, cujas ligações com o corpo celular artificial são realizadas através de pesos sinápticos. Os estímulos captados pelas entradas são processados pela função somatório, e o limiar de disparo do neurônio biológico foi substituído pela função de ativação através de "bias". A Figura 5 ilustra o modelo do neurônio artificial.

Figura 5 - Neurônio artificial

No neurônio artificial, as entradas x_i , os pesos sinápticos w_{kj} e a saída Y_k , são representados sob a forma matricial.

A saída do neurônio k é definida pelo seu valor de ativação calculado da seguinte forma:

$$Y_{k} = \sum_{k=1}^{m} W_{kj} x_{i} + b_{j}$$
 (7)

Onde:

 $\mathbf{Y}_{\mathbf{k}}$ é o valor da saída do neurônio \mathbf{k} ;

w_{kj} são os pesos das conexões do neurônio k;

 \mathbf{x}_i é o valor de cada um dos \mathbf{m} estímulos que chegam ao neurônio \mathbf{k} ;

b é o valor do bias que será somado ao valor do combinador linear para compor o valor de ativação.

A função de ativação deve simular as características do neurônio biológico. A seguir algumas funções mais utilizadas:

(a) Função degrau: É uma equação (Equação 8) utilizada para valores binários e é da forma (Figura 6):

(b) Função sigmóide: Também chamada de função logística, é uma função contínua (Equação 9) que permite a transição gradual entre os dois estados. É dada por (Figura 7):

Figura 7 – Função sigmóide

(c) Função tangente hiperbólica ou tansig: É uma função sigmóide (Equação 14) que varia entre –1 e +1. É dada por (Figura 8):

Figura 8 - Função tangente hiperbólica

(d) Função linear: É uma função linear (Equação 11) da forma (Figura 9):

Figura 9 – Função linear

(e) Função simétrica: É uma função (Equação 12) da forma (Figura 10) e similar a função degrau:

Figura 10 – Função simétrica

(f) Função linear positiva: É uma função (Equação 13) da forma (Figura 11):

Figura 11- Função linear positiva

(g) Função linear com saturação: É uma função (Equação 14) da forma (Figura 12):

Figura 12 - Função linear com saturação

(h) Função de base radial: É uma função (Equação 15) da forma (Figura 13):

Figura 13 – Função de base radial

1.2.4 Topologia da RNA

A Figura 14 representa a topologia de RNA, onde as entradas são equivalentes no neuroônio biológico aos dendritos, a camada de saída são as respostas e as camadas escondidas são responsáveis pela capacidade de generalização da rede.

Figura 14 - Topologia de uma rede MLP

1.2.5 Técnicas de aprendizagem

A Rede Neural deve ser configurada para que o conjunto de dados de entrada mapeie um ou mais dados na saída, de acordo com a aplicação.

Podemos realizar a seguinte classificação dos métodos de treinamento:

 Treinamento Supervisionado – A Rede Neural é treinada através do fornecimento dos valores de entrada e seus respectivos alvos, isto é, valores de saída desejados (Pares de Treinamento). Consiste no processo de atualização dos pesos sinápticos de forma a Rede mapear corretamente os valores de entrada com os seus respectivos valores de saída apresentados. Podemos citar Perceptron e o MLP que será usado nesta investigação.

 Treinamento Não-Supervisionado - Não exige Matriz Saída Desejada (alvo). O sistema, auto-organizado, por exemplo, extrai as características do conjunto de padrões, agrupando-os em classes. Podemos citar Redes de Hamming e Kohonen.

1.2.6 Validação cruzada

A rede deve ser capaz de generalizar o conhecimento aprendido aplicando em novas situações com sucesso.

A validação cruzada é considerada uma técnica clássica e muito útil em determinar a capacidade de generalização de uma rede neural durante seu período de treinamento. Consiste em dividir aleatoriamente o conjunto de dados existentes, por exemplo, em três grupos:

- 1. Subgrupo de Treinamento 60%
- 2. Subgrupo de Validação 20%
- 3. Sugrupo de Teste 20%

O objetivo é validar o modelo da rede com um conjunto de dados diferente do utilizado para estimar os pesos sinápticos. Podemos citar que uma das vantagens é de fazer com que a rede não treine excessivamente, pois isto faz com que ela decore e não consiga generalizar.

Finalmente é realizado um teste de execução visando verificar o erro médio quadrático na saída.

A Figura 15 apresenta o resultado do treinamento, validação e teste para uma RNA através do toolbox de redes neurais do Matlab®, utilizado neste trabalho.

Figura 15 – Desempenho de uma RNA

Foi aplicado o método de critério de parada baseado no subgrupo de Validação. O treinamento é interrompido em determinado momento para que não ocorra pouco treinamento ou em excesso.

A cada iteração em que é realizado o treinamento da rede, o conjunto de dados pertencente ao subgrupo de Validação é utilizado para calcular o erro. Quando o erro torna-se baixo, o treinamento é interrompido.

Quando a rede está bem treinada, o erro do subgrupo de Validação atinge um valor mínimo. Entretanto, se a rede treinar demasiadamente, o erro do subgrupo de Validação começa a aumentar, o que significa que ela será incapaz de lidar com dados ruidosos e generalizar. Desenvolvido no começo da década de setenta para as redes com uma ou mais entradas, várias camadas escondidas e uma camada de saída.

O princípio de funcionamento deste algoritmo é baseado na correção de erros e ocorre em 2 etapas:

1. Movimento progressivo

Um padrão é apresentado à entrada da rede e o sinal é propagado neurônio a neurônio, até a saída da rede. Em cada neurônio por onde este sinal passa, o sinal é calculado como uma função de suas entradas e pesos associados, aplicados aquele neurônio. Este sinal é conhecido como sinal funcional ou sinal de entrada. (HAYKIN 2001).

2. Movimento retrógrado

A camada de saída obtida é comparada com o alvo desejado para o respectivo padrão apresentado na camada de entrada e a partir de então um sinal de erro é gerado. Este sinal percorre então desde a camada de saída até a camada de entrada e os pesos das conexões das unidades das camadas internas vão sendo alterados.

Na Figura 16 podemos observar o funcionamento do algoritmo de retropropagação de erro para o treinamento da Rede.

Primeiramente é apresentado um padrão na entrada da rede e gerada a respectiva saída, levando em consideração que a RNA é iniciada com valores aleatórios de pesos e bias no intervalo de [-1 1].

É calculado o erro médio quadrático entre os valores encontrados na saída e os alvos esperados, então este é propagado da saída para a entrada para então ser feito o ajuste dos pesos.

Esta atualização é feita baseada no gradiente descendente, conforme apresentado na Figura 16.

O algoritmo altera o valor dos pesos sempre na direção contrária a direção de maior aumento do erro médio quadrático de modo a minimizar o erro.

Este processo ocorre até o erro obtido ser satisfatório ou caso necessário ser apresentado mais padrões a RNA.

Figura 16 – Algoritmo de Retropropagação de Erro (Fonte: Biondi, 2006)

Neste trabalho, para a função de treinamento da rede que atualiza os valores dos pesos e bias, foram utilizados os seguintes métodos de otimização conforme seções 1.2.7.1 e 1.2.7.2, considerando um aprendizado por retro propagação:

1.2.7.1 Método Levenberg-Marquadt de retro propagação de erro

De acordo com Ranganathan (2004), este é um dos algoritmos de otimização mais populares. Em comparação com os métodos baseados no gradiente simples descendente e outros métodos de gradiente conjugados, ele é superior em várias aplicações.

Pode ser considerado como um aperfeiçoamento do método Gauss-Newton, que é uma variante do método de Newton. (Neto et al, 2010).

Segundo (Hagan; Menhaj, 1994), consiste na idéia em que para minimizar o

erro funcional E(w), deve-se encontrar pesos para as quais derivadas $\frac{\partial E(w)}{\partial w^i}$ se anulem. (Igel et al 2005).

Considerando a aproximação linear (Equação 16) e de acordo com Igel et al (2005), é seguido o seguinte raciocínio:

$$\hat{f}(x;w) = f(x;w(t)) + \sum_{j=1}^{n} [w^{j} - w^{j}(t)] \frac{\partial f(x;w(t))}{\partial w^{j}}$$
(16)

Substituindo \hat{f} por f no erro quadrático encontra-se uma nova função $\hat{E}(w(t))$ com gradiente, conforme Equação 21:

$$\frac{\partial \hat{\mathbf{E}}(w)}{\partial w^{i}} = \frac{2}{P} \sum_{p=1}^{P} \Box [\hat{f}(x_{p}; \mathbf{w}) - y_{p}] \frac{\partial \hat{f}(x_{p}; w(t))}{\partial w^{i}}$$

=

$$= \frac{\partial E(w(\mathbf{t}))}{\partial w^{i}} + \sum_{j} A_{ij}(w(\mathbf{t})) [w^{j} - w^{j}(t)]$$
⁽¹⁷⁾

A matriz $A_{ij}(w)$ de dimensão $n \ge n$ possui as entradas (Equação 18)

$$A_{ij}(w) = \frac{2}{P} \sum_{p=1}^{P} \frac{\partial f(x_p; w)}{\partial w^i} \frac{\partial f(x_p; w)}{\partial w^j}$$
(18)

Com o método de Newton, ajustando a Equação 18 para zero, os pesos são atualizados conforme (Equação 19)

$$w^{i}(t+1) = w^{i}(t) - \sum_{j=1}^{n} A^{ij}(w(t)) \frac{\partial E(w(t))}{\partial w^{j}}$$
(19)

Onde A^{ij} é a matriz inversa de A_{ij} . Esta atualização de pesos leva a uma otimização se $\hat{E}(w) = E(w)$ Isto é, em geral, não é o caso e a regra de atualização de peso (2) é apenas razoável próximo ao mínimo. Entretanto, automaticamente fica conforme a Equação 20.

$$w^{i}(t+1) = w^{i}(t) - \sum_{j=1}^{n} \left[A_{ij} + \lambda I_{ij}\right]^{-1} \frac{\partial E(w(t))}{\partial w^{j}}$$
(20)

O parâmetro λ > 0 permite comutação suave entre duas estratégias. Um grande valor para λ , corresponde a descida do gradiente simples. Existem várias heurísticas para adaptar λ .

A mais comum usada para diminuir o λ é multiplicando por $\lambda = 0$, 1[, se o erro diminuir, e para aumentar multiplicando por $\lambda + > 1$.

Um ponto crucial é a escolha inicial do λ_{0} , λ_{-} , λ_{+} para um bom desempenho do algoritmo.

1.2.7.2 Método resiliente de retropropagação de erro

Desenvolvido por Riedmiller e Braun (Riedmiller; Braun, 1993), seu princípio básico é eliminar a influência causada pela dimensão da derivada parcial na atualização dos pesos. Como consequência, somente o sinal da derivda parcial é
considerado para indicar a atualização dos pesos. O tamanho da alteração do peso a ser realizada é exclusivamente determinado pelo valor de atualização $\Delta w_{ij}^{(t)}$, conforme descrito em (Riedmiller, 1994). (Equações 21 e 22).

$$\Delta w_{ij}^{(c)} = \begin{cases} -\Delta_{ij}^{(c)}, se \frac{\partial E}{\partial w_{ij}}^{(c)} > \mathbf{0} \\ +\Delta_{ij}^{(c)}, se \frac{\partial E}{\partial w_{ij}}^{(c)} < \mathbf{0} \\ \mathbf{0}, \text{ outro} \end{cases}$$
(21)

Onde ∂w_{ij} é o resumo da informação do gradiente de todos os dados pertencentes ao conjunto dos padrões de treinamento.

Deve ser verificado substituindo $\Delta_{ij}^{(c)}$ por uma constante de atualização de valor Δ , sendo a Equação 21 denominada de regra de atualização Manhattan.

O segundo passo do método Resiliente é determinar o novo atualização de valor $\Delta_{ij}^{(t)}$. Este processo é similar a taxade aprendizagem.

$$\Delta w_{ij}^{(c)} = \begin{cases} n^* * \Delta_{ij}^{(c-1)}, se \frac{\partial E}{\partial w_{ij}} \stackrel{(c-1)}{*} * \frac{\partial E}{\partial w_{ij}} \stackrel{(c)}{>} 0 \\ n^- * \Delta_{ij}^{(c-1)}, se \frac{\partial E}{\partial w_{ij}} \stackrel{(c-1)}{*} * \frac{\partial E}{\partial w_{ij}} \stackrel{(c)}{<} 0 \\ \Delta_{ij}^{(c-1)}, \text{outro} \end{cases}$$
(22)

Onde:

$$0 < n^{-1} < 1 < n^{+1}$$

Frequentemente, a derivada parcial do peso correspondente w_{ij} muda de sinal, o que indica que a última atualização realizada foi muito grande e o algoritmo pulou o local mínimo, o valor de atualização $\Delta_{ij}^{(c)}$ é diminuido pelo fator n^- . Se a derivada mantiver o sinal, a atualizaçã de valor é levemente aumentada para acelerar a convergência em regiões "rasas". Adicionalmente, no caso de mudança de sinal não deverá ocorrer adaptação para o passo de aprendiado sucessivo. Na

prática, isto pode ser alcançado fazendo com que
$$\frac{\partial E}{\partial w_{ij}}^{(t-1)}$$
:=0.

1.2.8 Método do comitê de redes neurais

O princípio do Comitê de Redes Neurais é combinar o conhecimento de k RNAs de características próprias, denominadas de redes especialistas, para resolver problemas que apresentam alta complexidade. (HAYKIN; 2001).

Para o problema estudado, caso necessário, uma proposta possível de ser empregada é o comitê de redes neurais apresentada na Figura 17.

$$\begin{split} P_{M=} & (P_1 + P_2 + ... + P_k) \neq k \\ I_{M=} & (I_1 + I_2 + ... + I_k) \neq k \\ D_{M=} & (D_1 + D_2 + ... + D_k) \neq k \end{split}$$

Figura 17 - Diagrama de blocos do Comitê de Redes Neurais

Onde:

X é um vetor representando as condições ambientais;

Redes especialistas são RNAs de aprendizado supervisionado com características próprias;

Média aritmética é um bloco que a calcula a média das saídas obtidas pelas redes especialistas quando em execução;

 P_{M} é a média aritmética da variável P da camada de saída das redes especialistas;

 I_M é a média aritmética da variável I da camada de saída das redes especialistas;

 D_M é a média aritmética da variável D da camada de saída das redes especialistas;

P, I, D são as variáveis da camada de saída da RNA do final do Comitê.

São treinadas separadamente diversas RNAs de características diferentes com o mesmo conjunto de exemplos e alvos. Para cada rede são consideradas como entradas as condições ambientais e os alvos são os ganhos P, I e D. São características das RNAs o número de neurônios na camada escondida, o algoritmo de aprendizagem, número de camadas ocultas, etc.

As redes que apresentam melhor capacidade de generalizar são selecionadas para participar do comitê e são denominadas de especialistas.

Na fase de execução, é realizada a média aritmética dos valores obtidos na camada de saída de cada rede especialista. Estes valores são os dados de entrada para uma nova RNA cujos alvos são os mesmos considerados no treinamento das redes especialistas.

Por meio deste método, a expectativa é que as redes especialistas participantes do comitê convirjam para diferentes mínimos locais na superfície de erro e com a média aritmética e o treinamento de uma nova RNA diminua mais ainda o erro alcançado se aproximando ainda mais do mínimo global.

1.3 Sistema de posicionamento dinâmico (SPD)

Posicionamento Dinâmico pode ser definido como um sistema que controla automaticamente a embarcação de modo a manter seu posicionamento e aproamento exclusivamente pela ação do propulsor. (BRAY, 2003). Ou seja, como toda embarcação em alto mar está sujeita a diversas forças ambientais como vento, correnteza e ondas; o SPD é responsável em manter uma determinada posição ou realizar determinada trajetória de modo a realizar a compensação das forças com a atuação dos propulsores.

A característica fundamental dos SPDs é a integração de quatro subsistemas operando conjuntamente conforme apresentado na Figura 18. (YAMAMOTO; MOR-ROOKA, 2005; MORGAN, 1978).

- SENSORIAMENTO
- CONTROLE
- ATUAÇÃO
- POTÊNCIA

Figura 18 - Diagrama Esquemático de um Sistema de Posicionamento Dinâmico (Fonte: adaptado de M.Yamamoto; C.K.Morrooka, 2005)

Antes de iniciarmos uma breve descrição de cada subsistema, necessitamos compreender os movimentos de uma embarcação e para isso relembraremos alguns conceitos estudados na Cinemática. Para embarcações marítimas que se deslocam em 6 graus de liberdade, 6 coordenadas independentes são necessárias para determinar sua posição e orientação. As primeiras três coordenadas e respectivas derivadas temporais, correspondem a posição e ao movimento de translação nos eixos *x*, *y* e *z*, enquanto as últimas 3 coordenadas e respectivas derivadas temporais são usadas para descrever a orientação e o movimento rotacional.

A Figura 19 apresenta a notação adotada pela SNAME (1950) - Society of Naval Architects and Marine Engineers e utilizada até os dias de hoje para os movimentos de embarcações marítimas. São 6 as diferentes componentes definidas como: avanço (surge), deriva (sway), afundamento (heave), jogo (roll), arfagem (pitch) e guinada (yaw). (FOSSEN, 2002).

Figura 19 - Variáveis de movimento de uma embarcação marítima (Fonte: Fossen, 2002; SNAME 1950)

1.3.1 Histórico

A partir da década de 60 com a necessidade do homem em se aventurar cada vez mais em águas profundas devido a expansão das atividades de prospecção submarina de petróleo, surgiu a necessidade de aprimorar as tecnologias de navegação e aproamento das embarcações.

Em 1961, o navio americano Eureka, inicialmente projetado para possuir um o controle manual, recebeu o primeiro controlador automático e central de posição e aproamento e operou em lâminas de água de até 1300m. Em 1964, seguindo a mesma linha, o navio Calldrill foi equipado com um sistema similar, mas composto de 2 controladores operando em paralelo, o que permitiu perfurar em 2000m de lâmina de água. (JORGE, 2006).

Com a construção em 1971 do navio de deslocamento Sedco 445 da operadora Shell, iniciou-se uma nova era para o mercado para a perfuração petrolífera em águas profundas. Relata-se que em 1986, o número de embarcações dotada de SPD chegava a 180. (JORGE, 2006). No Brasil as primeiras unidades de sonda de posicionamento dinâmico começaram a operar conforme a Tabela 1.

É muito comum encontrar na literatura, trabalhos e artigos, a denominação DP (Dynamic Positioning) para navios e embarcações dotadas deste sistema.

Navio	Ano	Lamina d`Agua (metros)
Sedco 471	1978	145
Bem Ocean Lancer	1980 e 1981	131 e 505
Pelerin	1981	806
Sedco 472	1981	427
Pelerin	1982	137

Tabela 1 - Primeiros navios DP contratados pela Petrobras operando no Brasil

(Fonte: Jorge; 2006)

1.3.2 Vantagens, desvantagens e aplicabilidade

É interessante observar o número de aplicações existentes onde embarcações utilizam Sistema de Posicionamento Dinâmico. A lista abaixo referencia as principais atividades:

- Suporte a mergulho
- Lançamento e reparo de linhas
- Acomodação, "flotel"
- Dragagem
- Instalações submarinas
- Transporte de containers
- Pesquisas oceanográficas
- Lançamento de foguetes
- Exploração e produção de óleo e gás
- Operações militares
- Perfuração de poços de petróleo

- Navios petroleiros (aliviadores)
- Quebra-gelo

As Figuras 20, 21 e 22 apresentam alguns exemplos de embarcações dotadas de SPD exercendo diferentes atividades:

Figura 20 - CSO Deep Blue - maior navio do mundo atuando em serviços de construção e lançamento de linhas (Fonte: Cintra, 2011)

Figura 21 - Lançamento de Foguete Telstar 18 (Fonte: Sea Launch, 2004)

Figura 22 - Plataforma da Petrobras P-56 (Fonte: Agência Brasil, 2012).

Existem vantagens e desvantagens de se ter uma embarcação equipada com o posicionamento dinâmico, onde se destacam as principais:

Vantagens

- Não é necessária a presença de rebocadores para mudança de locação.
- A embarcação é totalmente manobrável.
- Rápidas respostas às variações climáticas e exigências operacionais.
- Versatilidade & Operacionalidade.

Desvantagens

- Pode haver perda de posição devido à falha de equipamentos.
- Custo mais elevado que as plataformas convencionais.
- Alto consumo de combustível.
- Ameaça aos ROVs (Remoted operated underwater vehicle) e mergulhadores.

1.3.3 Estratégia de Controle do SPD

Pode ser dividido em 3 partes conforme Figura 18 da seção 1.3.

1.3.3.1 Controle e sensoriamento

Composto por computadores e softwares associados e sensores (API, 2005).

Figura 23 – Diagrama de blocos do SPD

Os controladores (um para cada grau de liberdade de movimento da embarcação) recebem o sinal de deslocamento e das condições do meio ambiente e então calculam a força e momento necessários para atuar sobre os propulsores e manter o equilíbrio da embarcação.

O sistema de sensores é responsável por medir o deslocamento da embarcação e os parâmetros ambientais, tais como o vento, a correnteza e as ondas.

1.3.3.2 Propulsores

De acordo com Aleixo (2009), a variedade de propulsores no mercado é grande e como não há nenhum que apresenta melhor desempenho para SPD, o projetista deverá escolher conforme sua experiência.

A capacidade DP de um navio é fornecida por seus propulsores. Em geral, três tipos principais de propulsores são montados em navios DP: hélices principais (Figura 24), propulsores túnel (Figura 25) e propulsores azimutais (Figura 26).

Figura 24 – Hélice principal

(Fonte: Fassmer-Werft)

Figura 25 – Propulsor em túnel BT-400 (Fonte: Harbormaster Marine, Inc.)

Figura 26 – Propulsor azimutal (Fonte: Kawasaki)

A Figura 27 apresenta as configurações típicas de instalação dos propulsores dependendo da função da embarcação.

Configuração Típica dos Sistemas de Propulsão

Figura 27 – Configurações típicas de propulsores

(Fonte adaptada: IMCA, 2003)

Essencial para a operação de qualquer navio dotado de SPD, responsável pela geração, fornecimento e distribuição de energia. Propulsores, sistemas de sensoriamento e de controle, e todos os sistemas auxiliares devem ser alimentados pelo sistema de potência.

2 MODELAGEM

A Modelagem realizada neste trabalho consiste em simular um pequeno trajeto de uma embarcação dotada de SPD em alto mar. Durante este trajeto, foi atribuída a embarcação a variação de diversas condições ambientais encontradas em uma situação real.

Como já citado no capítulo 1, embarcações dotadas de SPD necessitam de um bom desempenho do seu subsistema de controle para que suas operações sejam realizadas com segurança e precisão.

A Figura 28 apresenta o modelo usado nesta pesquisa deste trabalho. Uma RNA deverá ser projetada para determinar os parâmetros P, I, D do controlador responsável pela intensidade da força dos propulsores da embarcação. Neste trabalho, a RNA foi analisada sob a perspectiva de atuar de modo off-line, o modo on-line pode ser implementado em trabalhos futuros.

Figura 28 - Modelo da RNA adaptada ao SPD da Embarcação

Este trabalho foi dividido em duas etapas:

- Simulação das condições ambientais exercidas na embarcação e sintonia do controlador
- 2. Projeto da Rede Neural

2.1 Simulação das condições ambientais exercidas na embarcação e sintonia do controlador

2.1.1 Simulador de SPD

O estudo aqui apresentado é baseado no simulador computacional de SPD desenvolvido em ambiente Matlab® em Tannuri (2002).

Este simulador computacional desenvolvido em ambiente Matlab contém o modelo dinâmico da barcaça no plano horizontal e dos esforços ambientais, o modelo dos propulsores, lógica de alocação de empuxo, filtros de ondas, controladores PIDs e modo de controle deslizante.

Foram realizadas algumas modificações, como a exclusão do modo de controle deslizante, já que o foco desta pesquisa é o controle PID. Embora o simulador de SPD esteja capacitado para simular 3 graus de liberdade de uma embarcação, com respectivos controladores para cada movimento, a investigação deste estudo visa somente o movimento de surge.

A Figura 29 representa o diagrama de blocos do SPD em Simulink, um dos ambientes do Matlab®. Por meio do modelo dinâmico da embarcação representado no bloco denominado Dinâmica, são consideradas as propriedades dos agentes ambientais vento (direção e velocidade), correnteza (direção e velocidade) e onda (direção e altura) no bloco Forças Ambientais - para calcular, então, a posição estimada da embarcação. Uma vez calculada, ela será comparada com a posição desejada ou referência .Em seguida, deverão ser realizados os devidos ajustes no controle PID.

Figura 29 - Simulador do SPD visto por meio de diagramas de blocos no Simulink

O SPD em questão possui para o subsistema controle, 3 controladores PIDs representando os graus de liberdade surge,sway e yaw (mencionados no capítulo 1) de uma embarcação conforme ilustrado no bloco Controlador Propulsores da Figura 29. A Figura 30 representa este bloco com mais detalhes:

Figura 30 - Bloco de Controle do Simulador de SPD no Simulink responsável pelos PIDs que atuam na força a ser aplicada nos propulsores

A investigação em foco consiste somente em analisar o controle de surge da barcaça, portanto, foi assumido controle perfeito em sway e yaw. Foi necessário

desconectar os outros controladores PIDs responsáveis pelos movimentos de sway e yaw conforme Figura 31. Para ajustar o controle destes movimentos, bastaria repetir o mesmo procedimento.

Figura 31 - Bloco de Dinâmica do Simulador de SPD no Simulink responsável pela comutação dos controladores PIDs com o restante do Sistema.

2.1.2 Características da embarcação utilizada

Foi utilizado o mesmo modelo de uma embarcação do tipo barcaça descrito em Tannuri (2002).

Conforme descrito em (Tannuri, 2002), a barcaça é responsável pelo lançamento de dutos em alto mar e operações de içamentos de cargas em plataformas.

A utilização de um SPD permite que as operações sejam realizadas com maior agilidade e precisão. Além disso, a ausência do sistema de amarração permite lançamentos em locais com grande concentração de estruturas e cabos submarinos e próximos a plataformas ou FPSO's (Floating production storage and offloading) amarrados. Por esse fato, adicionado aos altos custos envolvidos na operação, os SPDs aplicados a barcaças de lançamento devem atender a necessidade de manutenção de posicionamento mesmo na falha de um componente ativo ou passivo do sistema. (Tannuri, 2002).

A Tabela 2 apresenta as dimensões da barcaça utilizada no modelo do simulador e a Figura 32 ilustra uma barcaça genérica DP.

120 m
30 m
5 m
-0 m
1700*103 kg
1,79 x109 kgm ²
1500 m ²
420 m ²

Tabela 2 - Características principais da barcaça

(Fonte: adaptado de Tannuri, 2002)

Figura 32 – Barcaça genérica DP (Fonte: energiahoje)

2.1.3 Simulação das condições ambientais exercidas na embarcação

Em ambiente computacional, foi atribuído um trajeto de 24m a ser percorrido no eixo x pela embarcação. Também foram consideradas variações de altura de onda, intensidade de vento e correnteza como fatores que a barcaça poderia estar sujeita em alto mar, simulando uma situação de lançamentos de dutos. Conforme já citado, estamos analisando somente o movimento de surge da embarcação.

Em uma situação real, essas condições ambientais são medidas por meio do subsistema de Sensoriamento do SPD (conforme apresentado no capítulo 1) e enviadas para o subsistema de controle.

A Figura 33 ilustra o movimento de surge da embarcação, onde V_x = Velocidade do Vento projetada em Surge, U_x = Velocidade da Correnteza projetada em Surge, Hs = Altura da Onda projetada em surge.

Como a variável Hs é difícil de ser medida, neste trabalho consideramos o movimento de Pitch da barcaça, resultante da variação da altura das ondas.

Figura 33 - Representação da barcaça sujeita as condições ambientais em surge;

Para cada condição ambiental de vento, correnteza e onda, foram realizados no subsistema de controle os ajustes dos ganhos do controlador PID a fim de que a embarcação realizasse sua tarefa com precisão. Esta sintonia foi realizada com base em alguns critérios estabelecidos:

- **ts**<200 s;
- **Mp**< 10%

Onde:

ts é o tempo em que a embarcação chegou a condição de estabilidade;

Mp é a taxa de sobre-sinal.

Os valores escolhidos para ts e Mp são típicos para ilustrar e comprovar a metodologia do projeto.

Foram realizadas 125 simulações, variando intensidade de vento, correnteza e altura da onda, de situações em que a barcaça estaria submetida durante determinada manobra. Com critérios definidos rigorosos, foram necessárias 700 simulações com seus respectivos ajustes de ganho. A Tabela 9 do Apêndice A apresenta todas as simulações realizadas com suas respectivas sintonias para o controlador de surge. Os dados marcados em verde pertencem ao conjunto dos 125 dados que pertencem aos critérios definidos e utilizados na etapa seguinte da modelagem, conforme apresentado na seção 2.2.

Para a modelagem das forças da correnteza sobre a barcaça, o simulador de SPD utiliza o modelo de asa curta estendido, proposto por Simos et al (2001) e descrito em (Tannuri, 2002).

Para estimar a incidência das ondas foram consideradas forças de deriva média e lenta atuando sobre a embarcação para movimentos de surge, sway e yaw da embarcação. (TANNURI, 2002). Entretanto, a proposta deste trabalho só considera o controlador do movimento de surge.

Para descrever a modelagem das forças de vento incidentes pressupõe que a velocidade do navio é menor que a velocidade do vento. É utilizado o modelo de rajadas de vento denominado espectro de Harry. (HARRIS, 1971; TANNURI, 2002)

O procedimento da sintonia é um dos pontos críticos e mais importantes deste trabalho. Sendo um procedimento subjetivo e heurístico, pode consumir tempo excessivo conforme já discutido no capítulo 1. Além disso, há chance de não se conseguir resultados satisfatórios em todas as faixas de operação do processo, devido à limitação de desempenho do procedimento empreendido em tais ajustes Uma má sintonia ou imprecisa para determinada condição ambiental implica em uma informação sem qualidade que a RNA utilizará para o aprendizado implicando em um desempenho ruim.

2.2 Projeto da rede neural

Com os dados já obtidos na simulação das condições ambientais exercidas na embarcação e sintonia do controlador (seção 2.1), iniciamos a 2ª etapa selecionando, entre os diversos métodos de aprendizagem existentes, o Supervisionado como o mais adequado para este tipo de problema - uma vez que possuímos os valores de entrada e os alvos.

Cabe ressaltar que foi utilizado no trabalho o software Matlab® que é um ambiente de desenvolvimento bastante difundido tanto no contexto acadêmico, quanto no âmbito industrial. O Matlab® é uma poderosa ferramenta para problemas de cunho matemático, tendo ferramentas gráficas avançadas para análise e visualização de dados. Além disso, o Matlab® possui uma toolbox exclusiva para redes neurais artificiais, isto é, um conjunto de funções pré-definidas que são de grande valia para o projetista de redes neurais artificiais.

Primeiramente, definimos a quantidade de nós de entrada e neurônios da camada de saída para o Projeto da RNA, bem como o algoritmo de aprendizagem de Retropropagação de erro. As Tabela 3 e Tabela **4** representam a escolha adotada:

Tabela 3 - Variáveis	de entrada	utilizadas	para RNA
----------------------	------------	------------	----------

CONTROLADOR SURGE
1-Velocidade da Correnteza projetada em Surge (U _x)
2-Velocidade do Vento projetada em Surge (V _x)
3-Movimento de Arfagem (Pitch)

Tabela 4 - Variáveis de saída utilizadas para RNA

	CONTROLADOR SURGE
1-Proporcional (P)	
2-Integral (I)	
3-Derivativo (D)	

Para o dimensionamento, a rede recebeu os 125 padrões na forma matricial [3 125] definidos na primeira etapa que farão parte do método utilizado pela toolbox do Matlab® para realizar Treinamento, Validação e Teste. Estes dados estão marcados em verde na Tabela 9 do Apêndice A.

Depois de a rede ser treinada com os dados apresentados, ela deve ser capaz de garantir a sintonia do controlador e consequentemente a estabilidade da tarefa a ser desempenhada pela embarcação para novas condições ambientais que não foram apresentadas a rede no momento do treinamento.

A RNA projetada neste trabalho atuará de forma offline ao controlador PID do SPD, sendo a auto sintonia a ser implementada em trabalhos futuros. O foco aqui é somente avaliar o desempenho da RNA para o problema proposto.

2.2.1 Preparação dos dados

Baseada na experiência de simular os padrões de treinamento sem tratamento algum e de constatar que o processo da RNA não estava ocorrendo com sucesso foram normalizados os dados da Tabela 9 do Apêndice A.

A equação 23 aplicada neste trabalho faz com que todos os dados assumam valores positivos

$$\mathbf{x}_{jnormalizado} = \frac{\mathbf{x}_j}{\mathbf{x}_{jmax}}$$
(23)

Onde

Xjnormalizado = componente do vetor normalizado

 \mathbf{x}_{i} = componente do vetor a ser normalizado

^x_{Imax} = componente do vetor com seu valor máximo apresentado

O número de camadas e de neurônios para camadas intermediárias geralmente é obtido por meio de método de tentativa e erro, sendo a experiência a principal heurística do projetista da RNA.

Todavia, deve-se levar em consideração que com um número muito pequeno de neurônios a rede pode não ter recursos suficientes para aprender. Além disso, a utilização de um número muito grande de neurônios e conexões pode fazer a rede perder sua capacidade de interpolação, pois ela decora os exemplos.

Foram realizados sucessivos testes para a escolha da melhor topologia para o problema proposto utilizando os algoritmos: Levenberg-Marquadt e Resiliente.

As Figuras 34, Figura 35 eFigura 36 ilustram as topologias com variações da quantidade de camadas ocultas que foram testadas:

Figura 34 - RNA com 1 camada escondida e 1 camada de saída

Figura 35 - RNA com 2 camadas escondidas e 1 camada de saída

Figura 36 - RNA com 3 camadas escondidas e 1 camada de saída

Caso nenhuma dessas topologias alcance um erro satisfatório para execução, o método de comitê de redes poderia ser empregado.

3 METODOLOGIA

Sendo o objetivo final, uma RNA capaz de determinar os ganhos do controlador relativos ao movimento de surge da barcaça é essencial o treinamento e a verificação de seu desempenho.

O modelo utilizado é representado na Figura 37:

Figura 37 – Diagrama de Blocos da Modelagem

A Tabela 5 apresenta as condições ambientais utilizadas para realizar as simulações encontradas de uma embarcação de lançamentos de dutos em alto mar.

Para cada valor estabelecido de U_x combinado com V_x e Hs foi realizada uma simulação de condição ambiental para a barcaça em alto mar no seu trajeto de 24m. Todavia, não foram simuladas condições ambientais de U_x entre 0,6 m/s e 1,25m/s com Hs de 2m e V_x entre 0 m/s e 1,25 m/s.

Foram determinados os ganhos PID do controlador para que a embarcação realizasse sua manobra com desempenho conforme critério definido na seção 2.1.3. Logo, muitas sintonias foram descartadas e somente as válidas participaram do treinamento da RNA.

U _x - Correnteza projetada em Surge (m/s)	V _x - Velocidade do Vento projetada em Surge (m/s)	H - Altura da On- da (m)
0 0,125	0	0
0,25	5	
0,35		
0,5	10	1
0,6		
0,75	15	
0,85		2
1	20	2
1,25		

Tabela 5 - Parâmetros utilizados para condições ambientais

As condições ambientais foram os dados de entrada da RNA e seus respectivos ganhos do controlador foram as saídas e participaram do processo de treinamento, validação e teste realizado pelo toolbox de redes neurais do Matlab®.

A fim de realizar comparações de desempenho, as topologias citadas na seção 2.2.2 foram testadas aumentando progressivamente com 2,3,6,8,10,15,20,30,50,70 neurônios em cada camada escondida. Foram utilizados os algoritmos Levenberg-Marquardt e Resiliente descritos nas seções 1.2.7.1 e 1.2.7.2.

Como todos os dados de entrada do simulador de SPD e suas respectivas saídas foram positivos, e devido a não linearidade do problema, a função de ativação para as camadas escondidas e camada de saída cujas características melhor atendeu foi a tansig.

A fim de comprovar a escolha da topologia mais adequada, foram realizadas novas simulações no programa de SPD para 15 novas condições ambientais que não participaram do treinamento; gerando um novo conjunto de dados de entrada para RNA e respectivos alvos. A Tabela 6 apresenta as novas condições ambientais utilizadas para realizar a simulações encontradas de uma embarcação de lançamentos de dutos em alto mar. Estes novos dados de entrada gerados foram inseridos na topologia escolhida e as respostas encontradas foram comparadas com os alvos esperados.

Ux - Correnteza projetada em Surge (m/s)	Vx - Velocidade do Vento projetada em Surge (m/s)	H - Altura da Onda (m)
0,1	0	0,1
0,2	0	0,1
0,125	2	0,1
0,75	3	0,1
0,9	4	0,1
0,1	0	1
0,2	0	1
0,125	2	1
0,75	3	1
0,9	4	1
0,1	0	2
0,2	0	2
0,125	2	2
0,75	3	2
0,9	4	2

Tabela 6 - Novos parâmetros utilizados para condições ambientais

Para o treinamento da RNA, alguns parâmetros do algoritmo backpropagation utilizando Levenberg-Marquadt ou Resiliente como método de determinação de erro precisaram ser definidos conforme a seguir na Tabela 7.

Tabela 7 - Variáveis de entrada utilizadas para RNA

Parâmetros	Valor
Máximo de Iterações	30000
Erro	10E-15
Taxa de Aprendizado	0,5

4 **RESULTADOS E DISCUSSÕES**

Ganho Proporcional

A partir da sintonia realizada por tentativa e erro (dados marcados em verde na Tabela 9 - Apêndice A), a Figura 38 mostra a partir da simulações no SPD, o valor da ação proporcional para correntezas a partir de 0,85 m/s, ventos de 0 m/s, 5 m/s e onda nula. Entretanto, para ventos de 10 m/s e 15 m/s foi necessário um valor bem superior deste ganho para correntezas superiores a 1m/s.

Figura 38- Ganho proporcional para V=5m/s e Hs=0m.

Para ventos de 15 m/s e ondas de 2m foi necessário aumentar o ganho proporcional a partir de correntezas de 0,35 m/s (Figura 39).

Figura 39- Ganho proporcional para V=15m/s e Hs=2m.

Ganho Integral

A Figura 40 mostra que para vento de 10 m/s e onda nula foi necessário aumentar o ganho gradativamente até correntezas de 0,6 m/s. A partir deste valor até correntezas de 1 m/s, um valor superior para ação integral foi necessário . Para correntezas de 1,25 m/s foi necessário um ganho elevado.

Figura 40 - Ganho integral para V=10m/s e Hs=0m.

A Figura 41 mostra que para ventos de 15 m/s e ondas de 2m foi necessário elevar o valor do ganho a partir de correntezas de 0,35 m/s.

Figura 41 - Ganho integral para V=15m/s e Hs=2m

Ganho Derivativo

A partir da sintonia realizada por tentativa e erro (dados marcados em verde na Tabela 9- Apêndice A), a Figura 42 mostra para ventos de 0 m/s e onda nula o valor da ação derivativa para correntezas superiores a 0,6 m/s.

Figura 42 - Ganho derivativo para V=0m/s e Hs=0m

Foi necessário diminuir o valor do ganho derivativo a para correnteza nula e ondas nulas com ventos de 10 m/s. A partir de valores de correnteza de 0,125 m/s a ação derivativa foi constante (Figura 43).

Figura 43- Ganho derivativo para V=10m/s e Hs=0m

Resposta da saída do controlador

Utilizando a experiência do operador, observamos que para condições nulas de vento, correnteza e onda, a embarcação permaneceu estável em sua manobra, para os ganhos Proporcional, Integral e Derivativo ajustados em 1900,10 e 4000000 respectivamente, conforme apresentado na Figura 44.

Figura 44 - Saído do Controlador com os ajustes de ganhos realizados para condições ambientais nula de vento, correnteza e onda.

Para correnteza de 0,85m/s e considerando as outras variáveis ambientais nulas, o ajuste foi um pouco mais demorado, pois o tempo de estabilidade (ts) definido na modelagem estava sendo ultrapassado. A Figura 45 apresenta um dos resultados encontrados durante o ajuste.

Figura 45 - Resposta do Controlador com ts=295 e ganhos P=2000, I=120 e D=4100000.

Foi necessário aumentar o ganho proporcional e manter os ganhos ajustados para a condição anterior de 0,75m/s para que a embarcação mantivesse a estabilidade no tempo definido na modelagem. A Figura 46 exibe o resultado final desejado para a condição de correnteza 0,85m/s e vento e onda nulos. Os valores dos ganhos encontrados para esta condição serão utilizados no treinamento da RNA.

Figura 46 - Resposta do Controlador com ts=295 e ganhos P=2000, I=120 e D=4100000.

Para vento e onda nulos, as condições de correnteza 1m/s e 1,25m/s foram as mais difíceis de serem ajustados os ganhos no controlador. Por ser um método empírico, várias simulações necessitaram ser realizadas até encontrar o ajuste ideal. Foram aumentados os ganhos proporcional e integral de modo que a barcaça mantivesse o desempenho desejado.

As Figuras 47 e 48 ilustram respectivamente uma das tentativas de realizar a sintonia e o resultado final desejado para U=1m/s; o mesmo ocorre para as Figuras 49 e 50 respectivamente para U=1,25m/s.

Figura 47 - Resposta do Controlador com ts=352 e ganhos P=10000, I=100 e D=4100000 para correnteza de 1m/s.

Figura 48 - Resposta do Controlador com ts=180 e ganhos P=17000, I=140 e D=4100000 para correnteza de 1m/s.

Figura 49 - Resposta do Controlador com ts=347 e ganhos P=17000, I=130 e D=4100000 para correnteza de 1,25m/s.

Figura 50 - Resposta do Controlador com ts=173 e ganhos P=32000, I=220 e D=4100000 para correnteza de 1,25m/s.

Em seguida, simulamos os mesmo valores de correnteza e mantivemos a altura da onda nula, variando a velocidade do vento. Para v=5m/s; v=10m/s e v=15m/s a embarcação apresentou comportamento muito similar a de v=0m/s; utilizando os mesmos ajustes dos ganhos de P, I e D. Entretanto, para v=20m/s a influência da componente Integral foi tão significativa como as componentes Proporcional e Derivativa. O ajuste foi realizado com sucesso, mas em alguns casos embora a embarcação tenha realizada a manobra estabelecida dentro dos parâmetros de estabilidade definidos, ocorreram algumas oscilações que não afetaram o desempenho esperado. Estas oscilações ocorrem devido ao vento não ocorrer de forma constante e sim em forma de rajadas. Com a aplicação do filtro de Kalman no simulador de SPD conforme realizado em (Tannuri, 2002), esta condição é reduzida.

Considerado ondas nulas, as Figuras 51 e 52 apresentam a resposta do controlador com os ganhos ajustados para condições de vento 20m/s e de correnteza de 0,35m/s e 1,25 m/s respectivamente.

Figura 51 - Resposta do Controlador com ts=165 e ganhos P=1900, I=20 e D=6200000 para correnteza de 0,35m/s e vento de 20m/s

Figura 52- Resposta do Controlador com ts=150 e ganhos P=120000, I=40 e D=4500000 para correnteza de 1,25m/s e vento de 20m/s.

Foram simuladas novamente as mesmas variações de correnteza e vento na embarcação, mas com a variação da altura da onda para 1 e 2m. Novos ajustes dos ganhos P, I e D foram realizados e dentre os que conseguiram manter o desempenho desejado durante a manobra estabelecida, participaram do treinamento da RNA.

Projeto da RNA

Para o Projeto da RNA utilizamos o conjunto de dados resultante das simulações realizadas (Tabela 9 do Apêndice A). Como foi utilizado o toolbox de Redes Neurais do Matlab®, conforme descrito na seção 2.2.2, o mesmo realiza uma divisão aleatória dos dados em subgrupos: Treinamento, Validação e Teste. Uma das vantagens desta segregação é a garantia de não possuir dados idênticos participando do Treinamento e Teste validando ainda mais a capacidade de generalização da RNA.

Os primeiros testes foram realizados sem a normalização dos dados de entrada e de saída, apresentando elevados erros de execução para topologia com uma camada escondida. Foram utilizadas as funções de ativação tansig e purelin para a camada escondida e de saída respectivamente devido à faixa em que se encontram os dados conforme Figura 53.

Figura 53 - Desempenho da RNA com 1 camada escondida com 100 neurônios e função tansig nas camadas escondidas e tansig na camada de saída e com algoritmo Levenber-Marquadt

Com a normalização dos dados, fica evidente a necessidade de utilizar funções de ativação compatíveis. O segundo teste realizado foi similar ao anterior, consistindo de normalizar os dados de entrada e saída e utilizou as funções de ativação tansig para a camada escondida e de saída respectivamente. Os resultados apresentados mostraram melhora significativa com um erro de execução de 2,7452E10⁻⁴.

Para o terceiro teste, foi seguido o mesmo padrão anterior, com a inclusão de mais uma camada escondida e preservadas as mesmas funções de ativação. O erro de execução encontrado foi reduzido embora ainda não fosse um valor satisfatório, confirmando a capacidade da RNA de generalizar com o aumento do número de camadas escondidas.

Para o quarto teste, utilizando 3 camadas escondidas e função de ativação tansig tanto para estas como para a camada de saída, o desempenho alcançado foi excepcional conforme apresentado na Figura 54. O aumento do número de camadas e a utilização de número igual de neurônios fez com que o processamento fosse

realizado de forma distribuída, melhorando a generalização e reduzindo ainda mais os erros de execução.

Figura 54 - Desempenho da RNA com 3 camada escondida com 50 neurônios e função tansig nas camadas escondidas e tansig na camada de saída e com algoritmo Levenber-Marquadt

O algoritmo de Levenberg-Marquardt se sobressaiu em relação ao Resiliente como metodologia de otimização aplicada ao método de retropropagação de erro.

A Tabela 8 apresenta os erros percentuais resultantes entre os ganhos PID desejados do controlador e os encontrado, para condições ambientais que ainda não haviam sido apresentadas para a RNA. Os ganhos desejados são resultantes do ajuste realizado por tentativa e erro para as novas condições ambientais simuladas e os encontrados foram determinados pela RNA. As novas condições assim como os ganhos desejados podem ser consultadas na Tabela 10 do Apêndice B.

Simulação	U _x (m/s)	V _x (m/s)	H(m)	P(erro %)	l (erro %)	D (erro %)
1	0,1	0	0,1	0,0027	0,0059	0
2	0,2	0	0,1	0,0034	0,0023	0
3	0,125	2	0,1	0,0022	0,0057	0
4	0,75	3	0,1	0,0084	0,0010	0,0002
5	0,9	4	0,1	0,0010	0,0001	0,0003
6	0,1	0	1	0,0015	0,0001	0
7	0,2	0	1	0,0006	0,0003	0
8	0,125	2	1	0,0041	0,0009	0
9	0,75	3	1	0,0020	0,0006	0
10	0,9	4	1	0,0005	0,0003	0
11	0,1	0	2	0,0021	0,0003	0
12	0,2	0	2	0,0004	0,0022	0
13	0,125	2	2	0,0006	0,0016	0
14	0,75	3	2	0,0059	0,0002	0,0004
15	0,9	4	2	0,0076	0,0008	0,0003

Tabela 8 - Erro percentual da sintonia da RNA projetada considerando novas condições ambientais apresentadas

Dentre as novas condições ambientais simuladas, as ações proporcional integral e derivativa mantém-se somente constantes para variações da correnteza, altura constante das ondas e ventos de 2m/s.(Tabela 10 – Apêndice B).

Sendo elevado o valor do vento ou alterado o valor da altura das ondas, foi constatada a necessidade de aumentar a influência das componentes proporcional e integral.

A Figura 55 ilustra a resposta do controlador com os ajustes realizados de por tentativa e erro para U=0,75m/s, V=3m/s e onda nula. Estes ajustes foram bem realizados de modo que a embarcação realizou a manobra com boa exatidão; e considerados estes os valores desejados para as mesmas condições.

Figura 55 – Resposta do Controlador com ts=180 e ganhos P=3000, I=120 e D=4000000.

A Figura 56 ilustra a resposta do controlador com os ajustes realizados por tentativa e erro para U=0,125m/s, V=2m/s e onda de 2m. Estes ajustes foram bem realizados de modo que a embarcação também mostrou um bom desempenho do seu sistema de controle e considerados os valores desejados para as mesmas condições.

Figura 56 - Resposta do Controlador com ts=168 e ganhos P=3600, I=130 e D=4000000.

5 CONCLUSÃO

O presente trabalho apresentou uma aplicação da inteligência computacional na área de controle, especificamente para Sistemas de Posicionamento Dinâmico a partir de resultados gerados de um simulador computacional.

O número de simulações empregadas foi suficiente para projetar uma RNA considerando apenas um grau de movimentação da barcaça de acordo com a proposta do estudo. Caso fossem considerados três graus de liberdade, uma quantidade maior de simulações seria necessária.

As ações de controle proporcionais e integrais mostraram-se mais efetivas do que as derivativas, para que a barcaça realizasse manobra corretamente.

Como os erros percentuais para os ajustes dos ganhos foram menores que 0,01%, podemos afirmar que utilizando a RNA projetada em conjunto com o controlador de surge e considerando os demais controladores bem ajustados para três graus de liberdade, a barcaça dificilmente errará a manobra.

O fato do erro apresentado ser mínimo para dados que não participaram do treinamento da RNA e ainda por serem previamente conhecidos os resultados, validam a eficiência da generalização da rede.

O método de Levenberg-Marquadt de retropropagação de erro mostrou-se muito eficiente para o treinamento da RNA e não foi necessário utilizar o comitê de RNAs, pois o erro apresentado foi baixo. Comparando o desempenho com o método resiliente, o método de Levenberg-Marquadt foi cerca de 100 vezes mais preciso permitindo, então, que a embarcação mantivesse o desempenho requerido mesmo com as alterações das condições ambientais.

Uma oportunidade de continuação desse trabalho será o projeto de RNAs para os controladores responsáveis pelos movimentos de sway e yaw da embarcação, assim como o comportamento dos 3 controladores em conjunto. A implementação destas RNAs em modo "on-line" poderá ser muito eficiente para ser utilizada nos SPDs existentes já que o controle PID é muito usual.

A aplicação de algoritmos genéticos substituindo a sintonia realizada de forma empírica também poderá ser considerada um ótimo trabalho futuro, pois demandará menos tempo.

REFERÊNCIAS

ALEIXO, Lucas C. **Posicionamento dinâmico de embarcações destinadas ao apoio marítimo em alto-mar utilizando controle nebuloso**. 2009.71 f. Trabalho de Conclusão de Curso (Engenharia Mecânica) – Universidade Federal do Espírito Santo, Vitória, 2009.

AMARAL, J. F. M. ; TANSCHEIT, Ricardo ; PACHECO, Marco Aurélio Cavalcanti . **Tuning PID Controllers through Genetic Algorithms. In: 2001 WSES International Conference on Evolutionary Computation**. Proceedings of the 2001 WSES International Conference on Evolutionary Computation, 2001. v. CD-ROM. p. 6121-6124, Puerto de La Cruz ,2001

API-AMERICAN PETROLEUM INSTITUTE. **Design and Analysis of Station Keeping Systems for Floating Structures**, API Recommended Practice 2SK, 3th.ed.2005.

ASTROM, K.J.; HAGGLUND, T. The future of PID control. **Control Engineering Practice**, n.9, p. 163–1175, apr.2001

BRAY, David. Dynamic Positioning In: The Oilfield Seamanship Series. V.9. Oilfield Publications Ltd., 2003.

CAMPOS, Mario C.M.M.; TEIXEIRA, Herbert C.G. **Controles típicos de** equipamentos de processos industriais. 1. ed. São Paulo: Edgard Blucher, 2006.

CINTRA, Rodrigo. **CSO Deep Blue: o maior navio de lançamento de linhas do mundo. 2011**. Disponível em: . Acesso em: 20 de janeiro de 2012.

DEMUTH, Howard B; HAGAN, Martin T. Neural Networks for Control. **American Control Conference**, San Diego, v.3, p. 1642-1656, aug.1999.

ENERGIAHOJE **Barcaça Genérica DP**. Disponível em: < http://www.energiahoje.com/>. Acesso em: 20 de janeiro de 2012.

FOSSEN, Thor I.Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles.1st ed.Trondheim: Marine Cybernetics,2002.

HAYKIN, Simon; trad. ENGEL, Paulo M. **Redes Neurais: princípios e práticas**. 2.ed. Porto Alegre: Bookman, 2001.

HARBORMASTER MARINE. **Propulsor em túnel BT-400**. Disponível em: < http://www.hellotrade.com/harbormaster-marine/bow-thrusters.html/>. Acesso em: 20 de janeiro de 2012.

HOPFIELD, John J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci., v. 79, p 2554-2558,apr. 1982.

IGEL, Christian; TOUSSAINT, Marc; WEISHUI, Wan. **Rprop Using the Natural Gradient.** International Series of Numerical Mathematics, v.1.2005.

IMCA, International Marine Contractor Association. Disponível em: <http://www.imca-int.com/>. Acesso em: 20 de janeiro de 2012.

HAGAN, M.T.; MENHAJ, M.B. **Training feedforward networks with the marquadt algorithm**. IEEE Transactions on Neural Networks, 5(6):p.989-993.1994.

HARRIS, R.I. **The Nature of the Wind, the Modern Design of the Wind-Sensitive Structures**, Construction Industry Research and Information Association, Londres, p.29-55.1971.

JORGE ,SARA S. Sistema de Posicionamento Dinâmico: Modelação e Construção de Hélice em Escala Reduzida através de Usinagem em Alta Precisão e Estudo Comparativo entre Simuladores. 2006. 61f. Projeto final de Curso (Engenharia Naval e Oceânica) – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2006.

KAWASAKI. **Propulsor azimutal**. Disponível em: < http://www.khi.co.jp/english/machinery/product/ship/rex/water.html/>. Acesso em: 20 de janeiro de 2012.

KOHONEN, T. **Self-organized formation of topologically correct feature maps**. Biological Cybernetics ,n.1,v.43, p.50-69, 1982.

LARA, Felipe. Artificial Neural Networks: An Introduction. **Journal of the Mexican Society of Instrumentation**, p. 5-10, Mexico, 2000.

LNCC. **Representação de um neurônio biológico**. 2011. Disponível em: http://www.lncc.br/~labinfo/tutorialRN/. Acesso em: 20 de dezembro de 2011.

MAZZILLI, F.T.;TANNURI,E.A. Técnicas de ajuste de ganhos de controle para Sistemas de Posicionamento Dinâmico. 23°Congresso Nacional de Transporte Aquaviário, Construção Naval e Offshore - SOBENA, Rio de Janeiro, out.2010.

MCCULLOCH, Warren S.;PITTS, Walter H. A logical calculus of the ideas immanent in nervous activity. **Bulletin of Mathematical Biophysics**, v.5, p.115-133,1943

Morgan, M.J.**Dynamic Positioning of Offshore Vessels**", PPC. Books Division,:Tulsa. 1978.

NETO, Luiz B; SIEIRA, Ana C. C. F; CABRAL, Eduardo V.; LIMA, Juliano L. Utilização de Redes Neurais Artificiais na Determinação do Coeficiente de Influência para Carregamentos Triangulares e Trapezoidais **Engevista** v.9, n.1, p.22-34, jun.2007.

NETO, Luiz B. Algoritmo de Retropropagação de Erro. Notas de aula, 2006.

OGATA, Katsuhiko; trad.MAYA, Paulo A. **Engenharia de Controle Moderno**. 4 .ed.São Paulo:Pretice Hall, 2003

OLIVEIRA, R.C.; ACEVEDO, N.I.A.; SILVA NETO, A.J. Aplicação de um Comitê de Redes Neurais Artificiais para a Solução de Problemas Inversos em Transferência Radiativa. **Sociedade Brasileira de Matemática Aplicada e Computacional**, n.2, p.171-182,2010.

RANGANATHAN, Ananth. The Levenberg-Marquadt Algorithm, 2004

RIEDMILLER, M. Advanced supervised learning in multi-layer perceptrons – From backpropagation to adaptive learning algorithms. Computer Standards and Interfaces, 16 (5):p.265-278.1994.

RIEDMILLER, M.; BRAUN, H. A directive adaptive method for faster backpropagation learning: The RPROP algorithm. In **E.H.Ruspini, editor, Proceedings of the IEEE International Conference on Neural Netoworks**, p.586-591.IEEE Press, 1993.

RUMELHART, D.E.; CHAVIN, Y. Backpropagation Theory: Architectures and Apllications, 1995.

SEA LAUNCH. **Lançamento de Foguete Telstar 18**. Disponível em: < http://www.sea-launch.com/current_launch.htm#missionalbum>. Acesso em: 20 de janeiro de 2012.

SILVA, J.M.G. Ajustes de Controladores PID, 2000. Disponível em: http://www.ece.ufrgs.br/~jmgomes/pid> Acesso em: 8 de jan de 2012.

SNAME -The Society of Naval Architects and Marine Engineers. Nomenclature for Treating the Motion of a Submerged Body Through a Fluid. In: **Technical and Research** Bulletin.n1-5, 1950.

TANNURI, Eduardo Aoun. **Sistemas de Posicionamento Dinâmico: Projetos, Análises e Novos Desenvolvimentos**, Livre-Docência, Universidade de São Paulo, São Paulo, 2009.

_____. Desenvolvimento de Metodologia de Projeto de Sistema de Posicionamento Dinâmico aplicado a operações em Alto-Mar. 2001.273 f. Tese de Doutorado (Engenharia Mecânica) - Universidade de São Paulo, São Paulo, 2002.

TANNURI, Eduardo A.; KUBOTA, Leonardo K. ; PESCE ,Celso P. Adaptive Techniques Applied to Offshore Dynamic Positioning Systems. ABCM, v.XXVIII, ,n.3, p.323-330,septemb. 2006

WERFT, Fassmer. **Hélice principal**.:Disponível em: <http:// http://www.svapotsdam.de/propeller-design.html />. Acesso em: 20 de janeiro de 2012. YAMAMOTO, M.; MOROOKA, C.K. Dynamic Positioning System of Semi-Submersible Platform Using Fuzzy Control. **Journal of the Braz.Soc.of Mech.Sci.&Eng**.,v.XXVII,n.4,p.449-455,oct;dec.2005

APÊNDICE A

A Tabela 9 apresenta todas as condições ambientais simuladas para a barcaça durante manobra de 24 m. Para condição ambiental foram realizados ajustes dos ganhos PID para que a embarcação realizasse a manobra com perfeição.

As marcações em verde representam os ajustes PID em que determinada condição ambiental foi possível alcançar o critério estabelecido. Estas condições ambientais com os respectivos ganhos ,participaram do treinamento da RNA.

U	V	Hs	Р	I	D	Мр	ts	Pitch
0	0	0,1	1900	10	4000000	0,2262	157	0
0,125	0	0,1	1900	10	4000000	0	158	0
0,125	0	0,1	1900	11	4000000	0	158	0
0,125	0	0,1	1900	20	4000000	0,1763	158	0
0,25	0	0,1	1900	10	4000000	0	161	0
0,25	0	0,1	1900	20	4000000	0	161	0
0,25	0	0,1	1900	30	4000000	0	160	0
0,25	0	0,1	1900	35	4000000	0	160	0
0,25	0	0,1	1900	40	4000000	0,1962	160	0
0,35	0	0,1	1900	20	4000000	0	163	0
0,35	0	0,1	1900	30	4000000	1,2655	163	0
0,35	0	0,1	1900	40	4000000	0	163	0
0,35	0	0,1	1900	50	4000000	0	162	0
0,35	0	0,1	1900	60	4000000	0,3318	162	0
0,5	0	0,1	1900	40	4000000	0	168	0
0,5	0	0,1	1900	50	4000000	0	168	0
0,5	0	0,1	1900	60	4000000	0	167	0
0,5	0	0,1	1900	70	4000000	0	167	0
0,5	0	0,1	1900	80	4000000	0,2088	167	0
0,5	0	0,1	1900	90	4000000	0,7282	166	0
0,6	0	0,1	1900	80	4000000	0,5862	171	0
0,6	0	0,1	1900	90	4000000	0,0809	171	0
0,75	0	0,1	1900	80	4000000	0	324	0
0,75	0	0,1	1900	90	4000000	0	277	0
0,75	0	0,1	1900	100	400000	0	239	0
0,75	0	0,1	1900	110	400000	0,4882	207	0
0,75	0	0,1	1800	110	400000	0,5005	207	0
0,75	0	0,1	1700	110	4000000	0,4957	208	0

Tabela 9 - Simulações resultante do SPD utilizadas para o Projeto da RNA

0,75	0	0,1	1600	110	4000000	0,4915	208	0
0,75	0	0,1	1900	120	4000000	1,1869	202	0
0,75	0	0,1	1900	130	4000000	1,8077	197	0
0,75	0	0,1	1900	140	4000000	2,3492	179	0
0,75	0	0,1	1900	110	4100000	0,2914	204	0
0,75	0	0,1	1900	110	4200000	0,0938	202	0
0,75	0	0,1	1900	110	4250000	0,0141	201	0
0,75	0	0,1	1900	110	4290000	0	201	0
0,75	0	0,1	1900	110	4300000	0	200	0
0,75	0	0,1	1900	110	4400000	0	199	0
0,75	0	0,1	1900	110	200000*22	0,1996	204	0
0,75	0	0,1	1900	120	4100000	0,972	200	0
0,85	0	0,1	1900	120	4100000	0,52	297	0
0,85	0	0,1	1900	130	4100000	1,2809	275	0
0,85	0	0,1	2000	120	4100000	0,511	295	0
0,85	0	0,1	5000	120	4100000	0,4657	242	0
0,85	0	0,1	8000	120	4100000	0,348	201	0
0,85	0	0,1	10000	120	4100000	0,2479	177	0
1	0	0,1	10000	120	4100000	0	300	0
1	0	0,1	9000	120	4100000	0	312	0
1	0	0,1	8000	120	4100000	0	322	0
1	0	0,1	11000	120	4100000	0	286	0
1	0	0,1	12000	120	4100000	0	275	0
1	0	0,1	10000	110	4100000	0	324	0
1	0	0,1	10000	100	4100000	0	352	0
1	0	0,1	10000	130	4100000	0,3438	278	0
1	0	0,1	10000	140	4100000	0,9084	260	0
1	0	0,1	10000	120	4000000	0	297	0
1	0	0,1	10000	120	3900000	0,0807	293	0
1	0	0,1	10000	120	4200000	0	303	0
1	0	0,1	10000	120	4300000	0	305	0
1	0	0,1	11000	140	4100000	0,8085	246	0
1	0	0,1	12000	140	4100000	0,7071	238	0
1	0	0,1	9000	140	4100000	0,9969	272	0
1	0	0,1	8000	140	4100000	1,1071	281	0
1	0	0,1	11000	150	4100000	1,2841	236	0
1	0	0,1	11000	160	4100000	1,7028	213	0
1	0	0,1	11000	130	4100000	0,2775	268	0
1	0	0,1	11000	120	4100000	0	286	0
1	0	0,1	11000	140	4200000	0,6536	246	0
1	0	0,1	11000	140	4300000	0,4939	246	0
1	0	0,1	11000	140	4000000	0,9687	245	0
	0	0,1	11000	140	3900000	1,1438	245	0
1	0	0,1	12000	140	3900000	0,7071	238	0
1	0	0,1	13000	140	4100000	0,619	213	0
	0	0,1	14000	140	4100000	0,5191	207	0
1	0	0,1	15000	140	4100000	0,433	204	0
1	0	0,1	16000	140	4100000	0,3455	200	0

1	0	0,1	17000	140	4100000	0,2735	180	0
1	0	0,1	12000	150	4100000	1,1614	213	0
1	0	0,1	12000	160	4100000	1,5593	208	0
1	0	0,1	12000	130	4100000	0,2129	249	0
1	0	0,1	12000	120	4100000	0	275	0
1	0	0,1	12000	140	4200000	0,5573	239	0
1	0	0,1	12000	140	4300000	0,4166	239	0
1	0	0,1	12000	140	4000000	0,8534	238	0
1	0	0,1	12000	140	3900000	1,0169	236	0
1	0	0,1	18000	140	4100000	0,183	177	0
1	0	0,1	19000	140	4100000	0,1038	176	0
1	0	0,1	16000	150	4100000	0,7022	194	0
1	0	0,1	16000	160	4100000	1,037	178	0
1	0	0,1	16000	130	4100000	0	204	0
1	0	0,1	16000	120	4100000	0	207	0
1	0	0,1	16000	140	4200000	0,2418	200	0
1	0	0,1	16000	140	4300000	0,1335	200	0
1	0	0,1	16000	140	4000000	0,4469	200	0
1	0	0,1	16000	140	3900000	0,5565	199	0
1,25	0	0,1	17000	140	4100000	0	327	0
1,25	0	0,1	18000	140	4100000	0	321	0
1,25	0	0,1	19000	140	4100000	0	315	0
1,25	0	0,1	16000	140	4100000	0	334	0
1,25	0	0,1	15000	140	4100000	0	340	0
1,25	0	0,1	17000	150	4100000	0,3443	311	0
1,25	0	0,1	17000	160	4100000	0,8416	296	0
1,25	0	0,1	17000	170	4100000	1,288	282	0
1,25	0	0,1	17000	130	4100000	0	347	0
1,25	0	0,1	17000	120	4100000	0	368	0
1,25	0	0,1	17000	140	4200000	0	332	0
1,25	0	0,1	17000	140	4300000	0	336	0
1,25	0	0,1	17000	140	4000000	0	323	0
1,25	0	0,1	17000	140	3900000	0	319	0
1,25	0	0,1	18000	160	4100000	0,7123	289	0
1,25	0	0,1	19000	160	4100000	0,5919	282	0
1,25	0	0,1	20000	160	4100000	0,4659	277	0
1,25	0	0,1	16000	160	4100000	0,9825	302	0
1,25	0	0,1	15000	160	4100000	1,129	308	0
1,25	0	0,1	18000	180	4100000	1,5162	265	0
1,25	0	0,1	18000	170	4100000	1,1319	277	0
1,25	0	0,1	18000	150	4100000	0,236	305	0
1,25	0	0,1	18000	140	4100000	0	321	0
1,25	0	0,1	18000	160	4300000	0,4364	297	0
1,25	0	0,1	18000	160	4200000	0,5784	293	0
1,25	0	0,1	18000	160	4000000	0,8483	285	0
1,25	0	0,1	18000	160	3900000	0,9884	282	0
1,25	0	0,1	32000	220	4100000	0,5692	173	0
0	5	0,1	1900	10	4000000	0,6043	158	0

0	10	0,1	1900	10	4000000	1,6789	161	0
0	10	0,1	1800	10	4000000	1,7173	160	0
0	10	0,1	1700	10	4000000	1,6584	161	0
0	10	0,1	1600	10	4000000	1,6382	160	0
0	10	0,1	1000	10	4000000	1,5458	161	0
0	10	0,1	2200	10	4000000	1,7698	160	0
0	10	0,1	2500	10	4000000	1,7749	159	0
0	10	0,1	1900	8	4000000	1,5727	161	0
0	10	0,1	1900	7	4000000	1,5555	160	0
0	10	0,1	1900	6	4000000	1,4493	161	0
0	10	0,1	1900	4	4000000	1,2874	161	0
0	10	0,1	1900	10	3900000	1,8052	160	0
0	10	0,1	1900	10	3800000	1,7443	160	0
0	10	0,1	1900	10	3600000	1,8853	160	0
0	10	0,1	1900	10	3500000	1,9773	160	0
0	10	0,1	1900	10	3000000	2,459	159	0
0	10	0,1	1900	10	4100000	1,5877	160	0
0	10	0,1	1900	10	4200000	1,5349	160	0
0	10	0,1	1900	10	4500000	1,394	160	0
0	10	0,1	1900	10	5000000	1,1929	159	0
0	10	0,1	1900	10	5500000	1,0664	158	0
0	10	0,1	1900	10	6000000	1,0234	158	0
0	10	0,1	1900	10	6500000	0,9109	157	0
0	10	0,1	1900	10	7000000	0,8805	156	0
0	15	0,1	1900	10	7000000	1,9397	157	0
0	15	0,1	2000	10	7000000	2,5468	159	0
0	15	0,1	2200	10	7000000	1,8839	158	0
0	15	0,1	2500	10	7000000	2,1601	157	0
0	15	0,1	1800	10	7000000	1,9499	158	0
0	15	0,1	1500	10	7000000	1,8681	157	0
0	15	0,1	1000	10	7000000	2,3754	158	0
0	15	0,1	1900	6	7000000	2,4273	158	0
0	15	0,1	1900	4	7000000	2,3789	158	0
0	15	0,1	1900	15	7000000	2,7467	159	0
0	15	0,1	1900	20	7000000	2,8708	158	0
0	15	0,1	1900	10	6000000	1,9984	159	0
0	15	0,1	1900	10	5000000	2,5408	162	0
0	15	0,1	1900	10	4000000	3,6292	164	0
0	15	0,1	1900	10	8000000	4,7808	156	0
0	15	0,1	3000	10	7000000	1,9974	157	0
0	15	0,1	4000	10	7000000	2,5433	158	0
0	15	0,1	5000	10	7000000	2,4362	157	0
0	15	0,1	6000	10	7000000	2,3097	157	0
0	15	0,1	30000	20	7000000	2,2398	157	0
0	15	0,1	30000	40	7000000	2,9177	157	0
0	15	0,1	30000	60	7000000	3,4596	157	0
0	15	0,1	30000	10	5000000	2,7125	162	0
	1 4 -	0.4	00000	40	4000000	2 40	161	

0	15	0,1	40000	20	4000000	4,1882	161	0
0	15	0,1	50000	20	4000000	4,0854	161	0
0	15	0,1	35000	20	4000000	4,263	162	0
0,125	5	0,1	1900	20	4000000	0,5577	159	0
0,25	5	0,1	1900	40	4000000	0,6651	161	0
0,35	5	0,1	1900	60	4000000	0,8236	163	0
0,5	5	0,1	1900	80	4000000	0,7328	157	0
0,6	5	0,1	1900	90	4000000	0,6111	171	0
0,75	5	0,1	1900	120	4100000	1,4388	201	0
0,75	5	0,1	2000	120	4100000	1,4492	200	0
0,75	5	0,1	3000	120	4100000	1,3578	178	0
0,75	5	0,1	3000	130	4100000	1,9475	178	0
0,75	5	0,1	3000	100	4100000	0,0407	203	0
0,75	5	0,1	3000	120	4100000	1,4139	179	0
0,75	5	0,1	3000	110	4100000	0,7573	199	0
0,75	5	0,1	3000	115	4100000	1,0757	197	0
0,85	5	0,1	10000	120	4100000	0,5665	177	0
1	5	0,1	10000	120	4100000	0,0847	247	0
1	5	0,1	9000	120	4100000	0,0579	299	0
1	5	0,1	8000	120	4100000	0,1497	311	0
1	5	0,1	11000	120	4100000	0,0064	275	0
1	5	0,1	12000	120	4100000	0	261	0
1	5	0,1	11000	140	4100000	1,124	240	0
1	5	0,1	11000	150	4100000	1,5742	229	0
1	5	0,1	11000	180	4100000	2,6618	203	0
1	5	0,1	11000	190	4100000	2,9184	199	0
1	5	0,1	17000	140	4100000	0,4713	179	0
1,25	5	0,1	32000	220	4100000	0,6534	173	0
0,125	10	0,1	1900	20	4000000	1,7133	162	0
0,25	10	0,1	1900	40	4000000	1,9554	164	0
0,35	10	0,1	1900	40	4000000	1,0508	166	0
0,5	10	0,1	1900	40	4000000	0	171	0
0,5	10	0,1	1900	60	4000000	0,7934	170	0
0,5	10	0,1	2000	40	4000000	1,0328	170	0
0,6	10	0,1	1900	60	4000000	0	176	0
0,6	10	0,1	1900	70	4000000	0,6776	175	0
0,75	10	0,1	1900	/0	4000000	0	311	0
0,75	10	0,1	1900	80	4000000	0	276	0
0,75	10	0,1	1900	90	4000000	0,9628	240	0
0,75	10	0,1	1900	100	4000000	1,5515	211	0
0,75	10	0,1	1900	130	4000000	3,8182	199	0
0,85	10	0,1	1900	90	4000000	0	330	0
0,85	10	0,1	2000	90	4000000	0	330	0
0,85	10	0,1	2200	90	4000000	0	322	0
0,85	10	0,1	2800	90	400000	0	319	0
0,85	10	0,1	2200	100	4000000	0,8184	290	0
0,85	10	0,1	2200	110	400000	2,0002	2/3	0
0,85	10	0,1	2200	110	4100000	1,6653	279	0

0,85	10	0,1	2200	120	4000000	2,6378	265	0
0,85	10	0,1	1900	130	4000000	3,6405	241	0
0,85	10	0,1	2200	130	4000000	3,2644	244	0
0,85	10	0,1	3000	130	4000000	3,4064	233	0
0,85	10	0,1	6000	130	4000000	2,8547	205	0
0,85	10	0,1	7000	130	4000000	2,5782	199	0
0,85	10	0,1	1900	200	4000000	6,5206	500	0
1	10	0,1	7000	130	4000000	2,3153	278	0
1	10	0,1	8000	130	4000000	2,0594	266	0
1	10	0,1	9000	130	4000000	1,9395	253	0
1	10	0,1	12000	130	4000000	1,5599	214	0
1	10	0,1	14000	130	4000000	1,1194	205	0
1	10	0,1	16000	130	4000000	1,0458	183	0
1,25	10	0,1	16000	130	4000000	0,2841	316	0
1,25	10	0,1	22000	130	4000000	0	268	0
1,25	10	0,1	300000	130	4000000	0	205	0
1,25	10	0,1	300000	180	4000000	0,5466	177	0
0	15	0,1	1900	10	7000000	2,2997	159	0
0	15	0,1	1900	10	4000000	3,4182	165	0
0	15	0,1	2400	10	4000000	3,4868	165	0
0	15	0,1	1900	100	4000000	6,8799	500	0
0,125	15	0,1	1900	20	4000000	4,0734	163	0
0,125	15	0,1	2200	20	4000000	4,1885	165	0
0,125	15	0.1	40000	20	4000000	4.2555	163	0
	_	=)		= =		-)=		-
0,125	15	0,1	1900	10	7000000	1,8698	158	0
0,125 0,25	<mark>15</mark> 15	<mark>0,1</mark> 0,1	1900 1900	10 10	7000000 7000000	1,8698 2,1316	<mark>158</mark> 157	0 0
0,125 0,25 0,25	15 15 15	0,1 0,1 0,1	1900 1900 2200	10 10 10	7000000 7000000 7000000	1,8698 2,1316 1,9065	158 157 157	0 0 0
0,125 0,25 0,25 0,35	15 15 15 15	0,1 0,1 0,1 0,1	1900 1900 2200 2200	10 10 10 10 10	7000000 7000000 7000000 7000000	1,8698 2,1316 1,9065 0,643	158 157 157 161	0 0 0 0
0,125 0,25 0,25 0,35 0,35	15 15 15 15 15	0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 2200 2200 1900	10 10 10 10 10 60	7000000 7000000 7000000 7000000 7000000	1,8698 2,1316 1,9065 0,643 1,3523	158 157 157 161 160	0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,35	15 15 15 15 15 15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 2200 2200 1900 2200 2200 2200	10 10 10 10 60 10	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000	1,8698 2,1316 1,9065 0,643 1,3523 0	158 157 157 161 160 163	0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5	15 15 15 15 15 15 15 15 15 15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 2200 2200 2200 1900 2200 1900 1900 1900	10 10 10 10 60 10 80	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 4000000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862	158 157 157 161 160 163 172	0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5	15 15 15 15 15 15 15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 2200 2200 1900 2200 1900 1900 1900 1900 1900 1900	10 10 10 10 60 10 80 80	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214	158 157 157 161 160 163 172 161	0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,6	15 15 15 15 15 15 15 15 15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 2200 2200 1900 2200 1900 2200 1900 1900 1900 1900 1900 1900	10 10 10 10 60 10 80 80 80 80	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082	158 157 157 161 160 163 172 161 166	0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,6 0,75	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 2200 2200 1900 2200 1900 1900 1900 1900 1900 1900 1900 1900	10 10 10 10 60 10 80 80 80 80 80	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0	158 157 157 161 160 163 172 161 162 172 161 172 161 172 161 172 161 179	0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,5 0,75 0,75	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 2200 2200 1900 2200 1900 1900 1900 1900 1900 1900 1900 1900 1900 2500	10 10 10 10 60 10 80 80 80 80 80 80 80	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 0	158 157 157 161 160 163 172 161 166 179 213	0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,6 0,75 0,75 0,75	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 2200 2200 1900 2200 1900 2200 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900	10 10 10 10 60 10 80 80 80 80 80 80 80 80 150	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 0 0 1,8101	158 157 157 161 160 163 172 161 166 179 213 175	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,85	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 2200 2200 1900 2200 1900 2200 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900	10 10 10 10 60 10 80 80 80 80 80 80 80 80 150	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 0 1,8101 1,727	158 157 157 161 160 163 172 161 166 179 213 175 189	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,85 1	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 2200 2200 1900 2200 1900 2200 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900	10 10 10 10 60 10 80 80 80 80 80 80 80 80 150 150 150	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7200000 7200000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 1,8101 1,727 0,5142	158 157 157 161 160 163 172 161 166 179 213 175 189 305	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,7	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 2200 2200 2200 1900 2200 1900 2200 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900	10 10 10 10 60 10 80 80 80 80 80 80 80 80 150 150 150 150	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7200000 7200000 7200000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 0 1,8101 1,727 0,5142 0,7533	158 157 157 161 160 163 172 161 166 179 213 175 189 305 300	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75 0,	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 1900 2200 2200 1900 2200 1900 2200 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900	10 10 10 10 10 60 10 80 80 80 80 150 150 150 150 150 150	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7200000 7200000 7200000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 0 1,8101 1,727 0,5142 0,7533 0,4735	158 157 157 161 160 163 172 161 166 179 213 175 189 305 300 209	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75 0,	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 1900 2200 2200 1900 2200 1900 2200 1900	10 10 10 10 10 60 10 80 80 80 80 150 150 150 150 150 150 150 150 150 150 150 150 150 150	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7200000 7200000 7200000 7200000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 1,8101 1,727 0,5142 0,7533 0,4735 0,7858	158 157 157 161 160 163 172 161 163 172 161 163 172 161 166 179 213 175 189 305 300 209 182	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,7	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 1900 2200 2200 1900 2200 1900 2200 1900 16000	10 10 10 10 10 60 10 80 80 80 80 150 150 150 150 150 150 150 150 150 150 150 150 150 150	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7200000 7200000 7200000 7200000 7200000 7200000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 1,8101 1,727 0,5142 0,7533 0,4735 0,7858	158 157 157 161 160 163 172 161 166 179 213 175 189 305 300 209 182 185	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,7	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 1900 2200 2200 1900 2200 1900 2200 1900 12000 16000 16000	10 10 10 10 10 60 10 80 80 80 80 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7200000 7200000 7200000 7200000 6500000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 1,8101 1,727 0,5142 0,7533 0,4735 0,7858 0,755	158 157 157 161 160 163 172 161 160 172 161 166 179 213 175 189 305 300 209 182 185 299	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75 0,	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 1900 2200 2200 1900 2200 1900 2200 1900 16000 16000 28000	10 10 10 10 10 60 10 80 80 80 80 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7200000 7200000 7200000 7200000 7200000 6500000 6500000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 1,8101 1,727 0,5142 0,7533 0,4735 0,7858 0,755 0 0	158 157 157 161 160 163 172 161 160 172 161 166 179 213 175 189 305 300 209 182 185 299 245	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75 0,	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 1900 2200 2200 1900 2200 1900 2200 1900 2200 1900 12000 16000 16000 28000 340000	10 10 10 10 10 10 80 80 80 80 150	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7200000 7200000 7200000 7200000 7200000 6500000 6500000 6500000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 1,8101 1,727 0,5142 0,7533 0,4735 0,7858 0,755 0 0 0	158 157 157 161 160 163 172 161 160 172 161 166 179 213 175 189 305 300 209 182 185 299 245 187	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,5 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,7	15 15	0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1900 1900 1900 2200 2200 1900 2200 1900 2200 1900 12000 16000 16000 340000	10 10 10 10 10 60 10 80 80 80 80 150	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7200000 7200000 7200000 7200000 7200000 6500000 6500000 6500000 6500000 6500000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 1,8101 1,727 0,5142 0,7533 0,4735 0,7858 0,755 0 0 0 0 0 0,755 0 0 0 0 0 0 0 0,755 0	158 157 157 161 160 163 172 161 166 179 213 175 189 305 300 209 182 185 299 245 187 186	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,125 0,25 0,25 0,35 0,35 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75 0,	15 15	0,1 0,1	1900 1900 1900 2200 2200 1900 2200 1900 2200 1900 2200 1900 2200 1900 1000 16000 28000 340000 340000	10 10 10 10 10 60 10 80 80 80 80 150 180 240	7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7200000 7200000 7200000 7200000 7200000 6500000 6500000 6500000 6500000 6500000 6500000	1,8698 2,1316 1,9065 0,643 1,3523 0 4,5862 1,2214 0,7082 0 1,8101 1,727 0,5142 0,7533 0,4735 0,7858 0,755 0 0 0 0 1,4936	158 157 157 161 160 163 172 161 160 172 161 166 179 213 175 189 305 300 209 182 185 299 245 187 186 172	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1,25	15	0,1	340000	240	5600000	1,4724	168	0
1,25	15	0,1	340000	240	5000000	1,5283	168	0
1,25	15	0,1	340000	240	4800000	1,7047	168	0
0	20	0,1	1900	10	4000000	6,2568	500	0
0	20	0,1	2500	10	4000000	5,794	500	0
0	20	0,1	1900	40	4000000	8,2916	500	0
0	20	0,1	6000	10	4000000	6,1659	500	0
0	20	0,1	1900	10	6000000	3,7705	162	0
0	20	0,1	1900	10	5000000	4,4097	164	0
0	20	0,1	1900	40	5000000	6,2162	500	0
0	20	0,1	1000	10	4000000	5,7377	500	0
0	20	0,1	1000	30	4000000	7,7217	500	0
0	20	0,1	200	10	4000000	5,6403	500	0
0	20	0,1	1900	20	7000000	4,7134	160	0
0	20	0,1	1900	20	6500000	3,9943	160	0
0	20	0,1	1900	20	6000000	4,1905	161	0
0	20	0,1	1900	20	5500000	4,7534	165	0
0	20	0,1	1900	40	5500000	5,7369	500	0
0	20	0,1	1900	20	6500000	3,1336	163	0
0,25	20	0,1	1900	20	6200000	2,8943	162	0
0,125	20	0,1	1900	20	6200000	4,1186	163	0
0,125	20	0,1	1500	20	6200000	3,9219	163	0
0,125	20	0,1	1000	20	6200000	3,799	163	0
0,125	20	0,1	1000	20	5800000	3,8506	162	0
0,125	20	0,1	1000	20	5000000	4,6612	166	0
0,125	20	0,1	1000	20	5200000	4,9205	166	0
0,35	20	0,1	1900	20	6200000	2,3654	165	0
0,5	20	0,1	1900	20	6200000	0,4968	182	0
0,5	20	0,1	2200	20	6200000	0,5371	185	0
0,5	20	0,1	1900	40	6200000	1,8057	182	0
0,5	20	0,1	1900	20	6000000	0,4063	181	0
0,5	20	0,1	1900	20	5800000	0,6363	175	0
0,6	20	0,1	1900	20	5800000	0	216	0
0,6	20	0,1	2200	20	5800000	0	215	0
0,6	20	0,1	1900	40	5800000	0,8435	187	0
0,75	20	0,1	1900	40	5800000	0	288	0
0,75	20	0,1	2200	40	5800000	0	259	0
0,75	20	0,1	3000	40	5800000	0	263	0
0,75	20	0,1	4000	40	5800000	0	234	0
0,75	20	0,1	6000	40	5800000	0	230	0
0,75	20	0,1	7000	40	5800000	0	249	0
0,75	20	0,1	9500	40	5800000	0,0278	191	0
0,85	20	0,1	9500	40	5800000	0	235	0
0,85	20	0,1	18000	40	5800000	0	189	0
0,85	20	0,1	22000	40	5800000	0	188	0
0,85	20	0,1	30000	40	5800000	0,1414	164	0
1	20	0,1	30000	40	5800000	0	171	0
1	20	0,1	80000	40	5800000	0,4246	157	0

1	20	0,1	80000	50	5800000	0,3618	156	0
1	20	0,1	80000	50	5400000	0,3017	157	0
1	20	0,1	80000	50	5000000	0,3488	156	0
1	20	0,1	80000	50	4500000	0,2402	151	0
1,25	20	0,1	80000	50	4500000	0	161	0
1,25	20	0,1	120000	50	4500000	0,431	154	0
1,25	20	0,1	120000	40	4500000	0,2447	150	0
1,25	20	0,1	120000	40	4200000	1,0025	148	0
0	0	1	3000	80	4000000	0,7655	158	0,0689
0,125	0	1	3000	80	4000000	0,7146	159	0,0686
0,25	0	1	3000	80	4000000	0,4279	164	0,069
0,35	0	1	3000	80	4000000	0	167	
0,35	0	1	3200	80	4000000	0	167	
0,35	0	1	3800	80	4000000	0,1098	166	0,0688
0,5	0	1	3800	80	4000000	0	170	
0,5	0	1	4200	80	4000000	0	170	
0,5	0	1	4800	80	4000000	0	170	
0,5	0	1	4200	90	4000000	0	170	
0,5	0	1	4800	90	4000000	0	170	
0,5	0	1	4200	100	4000000	0,3894	171	0,0689
0,6	0	1	4200	100	4000000	0	173	
0,6	0	1	4500	100	4000000	0	173	
0,6	0	1	4800	100	4000000	0	177	
0,6	0	1	5200	100	4000000	0	176	0.0688
_	-	-						- ,
0,6	0	1	5000	100	4000000	0,1305	174	0,0689
0,6 0,75	0 0	1 1	5000 5000	100 100	4000000 4000000	0,1305 0	174 296	0,0689
0,6 0,75 0,75	0 0 0	1 1 1	5000 5000 5200	100 100 100	4000000 4000000 4000000	0,1305 0 0	174 296 318	0,0689
0,6 0,75 0,75 0,75	0 0 0	1 1 1 1	5000 5000 5200 5600	100 100 100 100	4000000 4000000 4000000 4000000	0,1305 0 0 0	174 296 318 270	0,0689
0,6 0,75 0,75 0,75 0,75	0 0 0 0	1 1 1 1 1	5000 5000 5200 5600 5200	100 100 100 100 120	4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0 0,7711	174 296 318 270 263	0,0689
0,6 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0	1 1 1 1 1 1	5000 5000 5200 5600 5200 5600	100 100 100 100 120 120	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311	174 296 318 270 263 241	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0	1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200	100 100 100 100 120 120 120	4000000 4000000 4000000 4000000 4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385	174 296 318 270 263 241 235	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 5200 600 6200 6500	100 100 100 100 120 120 120 120 120	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507	174 296 318 270 263 241 235 242	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200 6200	100 100 100 100 120 120 120 120 120 120 120 120 120 120	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696	174 296 318 270 263 241 235 242 203	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200 6200	100 100 100 100 120 120 120 120 120 120 120 120 120 120 120 120	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467	174 296 318 270 263 241 235 242 203 235	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6400 5600	100 100 100 100 120 120 120 120 120 120 120 120 120 120 120 120 130 130	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601	174 296 318 270 263 241 235 242 203 235 242	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6400 5600 5600	100 100 100 100 120 120 120 120 120 120 120 120 130 130 130	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036	174 296 318 270 263 241 235 242 203 235 242 203 235 242 239	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6500 5600 5600 6500 6500 6200 6400 5600 5600 5600	100 100 100 100 120 120 120 120 130 130 130 130 130 130 130	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036 0,4195	174 296 318 270 263 241 235 242 203 235 242 235 242 203 235 242 235 242 235 242 235 242 239 198	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6500 5600 6200 6400 5600 5600 6400 5600 6000 6000	100 100 100 100 120 120 120 120 120 130 130 130 130 130 130 130 130	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036 0,4195 0,1678	174 296 318 270 263 241 235 242 203 235 242 239 198 307	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6400 5600 5600 6200 6400 5600 6400 5600 6000 6000 6500	100 100 100 100 120 120 120 120 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036 0,4195 0,1678 0,2197	174 296 318 270 263 241 235 242 203 235 242 235 242 307 277	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6400 5600 6400 5600 6400 5600 6000 6000 6500	100 100 100 100 120 120 120 120 120 120 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130	400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 420000 420000 420000 420000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036 0,4195 0,1678 0,2197 0	174 296 318 270 263 241 235 242 203 235 242 239 198 307 277 285	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6400 5600 6200 6400 5600 6000 6000 6500 6000 6000 6000 6000 6000 6000	100 100 100 100 120 120 120 120 120 120 130	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036 0,4195 0,1678 0,2197 0 0,8882	174 296 318 270 263 241 235 242 203 235 242 203 307 277 285 276	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6400 5600 6200 6400 5600 6000 6000 6500 7000 6000 6000 7000 6000 7000	100 100 100 100 120 120 120 120 120 120 130 140 140	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036 0,4195 0,1678 0,2197 0 0 0,8882 0,9539	174 296 318 270 263 241 235 242 203 235 242 239 198 307 277 285 276 287	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6400 5600 6200 6400 5600 6000 6000 6000 6000 6000 7000 7000 7000	100 100 100 100 120 120 120 120 120 120 130 130 130 130 130 130 130 140 140 140	400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 420000 420000 420000 420000 420000 420000 420000 420000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036 0,4195 0,1678 0,2197 0 0,8882 0,9539 0,8662	174 296 318 270 263 241 235 242 203 235 242 239 198 307 277 285 276 287 269	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6400 5600 6200 6400 5600 6000 6000 6000 6000 7000 6000 7000 7500	100 100 100 100 120 120 120 120 120 120 130 130 130 130 130 130 130 140 140 140 140 140 140	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036 0,4195 0,1678 0,2197 0 0,8882 0,9539 0,8662 0,7194	174 296 318 270 263 241 235 242 203 235 242 203 235 242 239 198 307 277 285 276 287 269 261	0,0689
0,6 0,75 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6400 5600 6200 6400 5600 6000 6000 6000 6000 7000 7000 7500 8500	100 100 100 100 120 120 120 120 120 120 130 130 130 130 130 130 130 140 140 140 140 140 140 140 140 140 140 140 140	400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 420000 420000 420000 420000 420000 420000 420000 420000 420000 420000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036 0,4195 0,1678 0,2197 0 0,8882 0,9539 0,8662 0,9539	174 296 318 270 263 241 235 242 203 235 242 239 198 307 277 285 276 287 269 261 243	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6400 5600 6200 6400 5600 6000 6000 6000 6000 7000 6000 7000 7000 7500 8500 10000	100 100 100 100 120 120 120 120 120 130 130 130 130 130 130 140	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036 0,4195 0,1678 0,2197 0 0,8882 0,2197 0 0,8882 0,9539 0,8662 0,7194 0,7544 0,4904	174 296 318 270 263 241 235 242 203 235 242 203 235 242 239 198 307 277 285 276 287 269 261 243 221	0,0689
0,6 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1	5000 5000 5200 5600 5200 5600 6200 6500 6200 6400 5600 6200 6400 5600 6000 6000 6000 6000 7000 7000 7500 8500 10000 12000	100 100 100 100 120 120 120 120 120 120 130 130 130 130 130 130 130 130 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140	4000000 4000000 4000000 4000000 4000000 4000000	0,1305 0 0 0,7711 0,1311 0,2385 0,5507 1,2696 1,3467 1,0601 0,9036 0,4195 0,1678 0,2197 0 0,8882 0,9539 0,8662 0,9539 0,8662 0,7194 0,7544 0,4904 0,465	174 296 318 270 263 241 235 242 203 235 242 203 235 242 203 235 242 239 198 307 277 285 276 287 269 261 243 221 206	0,0689

0,85	0	1	14000	140	4200000	0,5183	177	0,0689
1	0	1	14000	140	4200000	0,2109	282	
1	0	1	15000	140	4200000	0	261	
1	0	1	15000	150	4200000	0,3665	250	
1	0	1	15000	150	4300000	0,6258	277	
1	0	1	16000	150	4200000	0,1075	237	
1	0	1	17000	150	4200000	0	235	
1	0	1	16000	160	4200000	0,7278	234	
1	0	1	20000	150	4200000	0,1121	204	
1	0	1	22000	150	4200000	0,0246	195	0,0689
1,25	0	1	22000	150	4200000	0	326	
1,25	0	1	26000	150	4200000	0	290	
1,25	0	1	30000	150	4200000	0	287	
1,25	0	1	30000	160	4200000	0	249	
1,25	0	1	30000	160	4300000	0	251	
1,25	0	1	32000	160	4200000	0	242	
1,25	0	1	32000	170	4200000	0	207	
1,25	0	1	40000	170	4200000	0	175	
1,25	0	1	40000	180	4200000	0	173	
1,25	0	1	40000	170	4250000	0	175	
1,25	0	1	45000	170	4200000	0	172	
1,25	0	1	45000	180	4200000	0	170	
1,25	0	1	50000	180	4200000	0	169	
1,25	0	1	45000	180	4300000	0	172	
1,25	0	1	45000	220	4300000	0	168	
1,25	0	1	45000	250	4300000	0	168	
1,25	0	1	45000	280	4300000	0,1608	167	0,0689
0	5	1	1900	10	4000000	0	161	
0	5	1	3000	80	4000000	1,3416	158	0,0686
0,125	5	1	3000	80	4000000	1,2862	162	0,069
0,25	5	1	3000	80	4000000	0,7606	164	0,0689
0,35	5	1	3000	80	4000000	0,4067	168	0,0688
0,5	5	1	3000	80	4000000	0	173	
0,5	5	1	3500	80	4000000	0	172	
0,5	5	1	3500	100	4000000	0,8379	171	0,0688
0,6	5	1	3500	100	4000000	0	175	
0,6	5	1	4500	100	4000000	0	173	
0,6	5	1	6000	100	4000000	0,3379	174	0,0689
0,75	5	1	6000	100	4000000	0	298	
0,75	5	1	8000	100	4000000	0	234	
0,75	5	1	10000	100	4000000	0	207	
0,75	5	1	8000	140	4000000	2,0965	200	
0,75	5	1	8000	150	4000000	2,4535	180	
0,75	5	1	10000	150	400000	1,3633	174	0,0686
0,85	5	1	10000	150	4000000	1,9789	206	
0,85	5	1	12000	150	4000000	1,2879	180	0,0689
1	5	1	12000	150	4000000	1,7501	278	
1	5	1	15000	150	4000000	0,8523	243	

1	5	1	18000	150	4000000	0,6103	207	
1	5	1	20000	150	4000000	0,6814	207	
1	5	1	22000	150	4000000	0,4928	192	0,0687
1,25	5	1	22000	150	4000000	0,1471	304	
1,25	5	1	24000	150	4000000	0	283	
1,25	5	1	28000	150	4000000	0	270	
1,25	5	1	30000	150	4000000	0	263	
1,25	5	1	22000	200	4000000	1,5303	241	
1,25	5	1	28000	200	4000000	0,5321	206	
1,25	5	1	32000	200	4000000	0,2523	199	0,0689
0	10	1	1900	10	4000000	0	165	
0	10	1	2400	10	4000000	0	164	
0	10	1	3000	80	4000000	2,876	162	0,0689
0	10	1	2000	40	4000000	1,0095	163	0,0688
0,125	10	1	2000	40	4000000	0,8162	165	0,0688
0,25	10	1	2000	40	4000000	0	168	
0,25	10	1	3000	40	4000000	0,1583	167	0,0688
0,35	10	1	3000	40	4000000	0	172	
0,35	10	1	4000	40	4000000	0	169	
0,35	10	1	3000	60	4000000	0,9914	168	0,0688
0,5	10	1	3000	60	4000000	0	178	
0,5	10	1	5000	60	4000000	0	174	
0,5	10	1	7000	60	4000000	0	172	
0,5	10	1	5000	80	4000000	0,8318	170	0,069
0,6	10	1	5000	80	4000000	0	180	
0,6	10	1	7000	80	4000000	0,233	174	0,0689
0,75	10	1	7000	80	4000000	0	289	
0,75	10	1	9000	80	4000000	0	220	
0,75	10	1	15000	80	4000000	0	175	
0,75	10	1	18000	80	4000000	0	172	
0,75	10	1	20000	80	4000000	0	172	
0,75	10	1	15000	100	4000000	0,3642	175	0,0688
0,85	10	1	15000	100	4000000	0	200	
0,85	10	1	18000	100	4000000	0	176	
0,85	10	1	20000	100	4000000	0	173	
0,85	10	1	15000	120	4000000	0,6025	180	0,0687
1	10	1	15000	120	4000000	0,1991	268	
1	10	1	18000	120	4000000	0,1872	243	
1	10	1	20000	120	4000000	0	207	
1	10	1	15000	140	4000000	1,2074	236	
1	10	1	18000	140	4000000	1,0723	207	0.0000
1	10	1	20000	140	4000000	0,7902	194	0,0689
1,25	10	1	20000	140	4000000	0,3378	306	
1,25	10	1	22000	140	4000000	0,2099	304	
1,25	10	1	22000	160	4000000	1,208	269	
1,25	10	1	26000	160	4000000	0,1522	246	
1,25	10	1	28000	160	4000000	0,431	234	
1,25	10	1	26000	180	4000000	0,7027	208	

1,25	10	1	28000	180	4000000	0,6366	207	
1,25	10	1	32000	180	4000000	0,3235	198	0,069
0	15	1	3000	80	4000000	5,4106	500	
0	15	1	5000	80	4000000	5,0769	489	
0	15	1	7000	80	4000000	4,0683	162	
0	15	1	8000	80	4000000	4,447	161	
0	15	1	7000	80	4200000	4,279	162	
0	15	1	12000	80	4000000	3,7994	158	
0	15	1	16000	80	4000000	3,14	155	0,0687
0,125	15	1	16000	80	4000000	3,3319	157	0,0688
0,25	15	1	16000	80	4000000	2,9082	159	0,0688
0,35	15	1	16000	80	4000000	2,5566	160	0,0689
0,5	15	1	16000	80	4000000	2,0966	167	0,0688
0,6	15	1	18000	80	4000000	1,8399	166	0,0688
0,75	15	1	18000	90	4000000	1,1446	172	0,0689
0,85	15	1	18000	90	4000000	0,6479	197	0,0689
1	15	1	18000	90	4000000	0	240	
1	15	1	20000	90	4000000	0	227	
1	15	1	18000	120	4000000	1,3438	207	
1	15	1	20000	120	4000000	1,2024	204	
1	15	1	24000	120	4000000	1,1938	178	0,0688
1,25	15	1	24000	120	4000000	0	290	
1,25	15	1	28000	120	4000000	0	228	
1,25	15	1	24000	160	4000000	1,4579	227	0,069
1,25	15	1	30000	160	4000000	0,4019	188	0,0688
1,25	15	1	32000	160	4000000	0,4824	192	0,0688
0	20	1	3000	80	4000000	8,7939	500	
0	20	1	5000	80	4000000	8,2336	500	
0	20	1	8000	80	4000000	7,7098	500	
0	20	1	12000	80	4000000	6,3694	500	
0	20	1	16000	80	4000000	5,694	485	
0	20	1	20000	80	4000000	5,0115	370	
0	20	1	22000	80	4000000	4,6972	153	
0	20	1	22000	100	4000000	4,54	152	0,0688
0	20	1	22000	110	4000000	5,1516	367	
0	20	1	22000	120	4000000	5,2483	401	
0	20	1	22000	100	4200000	4,6391	156	
0	20	1	22000	100	4400000	4,6573	157	
0,125	20	1	22000	100	4000000	4,9537	157	0,0689
0,25	20	1	22000	100	4000000	4,6439	157	0,0686
0,35	20	1	22000	100	4000000	4,5322	156	0,069
0,5	20	1	22000	100	4000000	4,087	161	0,0689
0,5	20	1	24000	100	4000000	3,9526	161	0,0688
0,5	20	1	26000	100	4000000	3,9591	157	0,0687
0,5	20	1	24000	105	4000000	3,5983	159	0,069
0,5	20	1	24000	110	4000000	3,8902	158	0,0687
0,6	20	1	24000	105	4000000	3,817	160	0,0687
0,6	20	1	25000	105	4000000	3,1637	162	0,069

0,6	20	1	25000	120	4000000	3,5115	157	0,0689
0,75	20	1	25000	105	4000000	2,8025	168	0,0687
0,75	20	1	28000	105	4000000	2,6385	163	
0,75	20	1	32000	105	4000000	2,0602	160	
0,75	20	1	38000	105	4000000	1,9263	157	0,0689
0,85	20	1	38000	105	4000000	1,6624	162	0,0688
1	20	1	38000	105	4000000	0,99	167	0,0689
1,25	20	1	38000	105	4000000	0	178	
1,25	20	1	42000	105	4000000	0	176	
1,25	20	1	36000	105	4000000	0	206	
1,25	20	1	32000	105	4000000	0	205	
1,25	20	1	38000	110	4000000	0	179	
1,25	20	1	38000	120	4000000	0.2320	177	0,0688
0	5	2	3000	80	4000000	0	269	
0	5	2	6000	80	4000000	0	171	
0	5	2	2500	80	4000000	0	168	
0	5	2	2200	80	4000000	0	255	
0	5	2	2400	80	4000000	0	341	
0	5	2	2500	90	4000000	0	270	
0	5	2	2800	90	4000000	0	200	
0	5	2	3400	90	4000000	0,3787	173	0,1376
0,125	5	2	3400	90	4000000	0	171	
0,125	5	2	3800	90	4000000	0,0118	170	0,1375
0,25	5	2	3800	90	4000000	0	174	
0,25	5	2	4200	90	4000000	0	243	
0,25	5	2	3800	110	4000000	0	325	
0,25	5	2	4200	110	4000000	0,6749	285	
0,25	5	2	4200	110	4100000	0	173	
0,25	5	2	5000	110	4100000	0	173	
0,25	5	2	4600	110	4000000	0,1746	171	0,1375
0,35	5	2	4600	110	4000000	0,4782	297	
0,35	5	2	5000	110	4000000	0	320	
0,35	5	2	5000	120	4000000	1,2088	198	0,138
0,5	5	2	5000	120	4000000	0,6881	353	
0,5	5	2	6000	120	4000000	1,6821	353	
0,5	5	2	5000	130	4000000	2,4632	300	
0,5	5	2	5000	150	4000000	0,7009	236	0.4070
0,5	5	2	5000	160	4000000	1,4364	200	0,1373
0,5	5	2	5200	160	4000000	4,1035	258	
0,6	5	2	5000	160	4000000	3,7847	269	
0,6	5	2	5500	160	4000000	4,383	2/8	
0,6	5	2	5000	170	4000000	3,1111	297	
0,6	5	2	5000	180	4000000	5,0054	500	
0,6	5	2	5000	160	4100000	1,4013	2//	
0,6	5	2	5000	160	4200000	2,4961	332	
0,6	5	2	5000	160	4150000	1,79	246	
0,6	5	2	5000	160	4160000	1,79	246	
0,6	5	2	5200	160	4150000	2,0946	304	

0,6	5	2	5100	160	4150000	3,4741	300	
0,6	5	2	5000	165	4160000	2,5124	297	
0,6	5	2	5000	165	4200000	2,5357	241	
0,6	5	2	5000	165	4300000	1,3984	297	
0,6	5	2	6000	165	4300000	1,4322	227	
0,6	5	2	6500	165	4300000	1,9206	211	
0,6	5	2	7000	165	4300000	2,6235	235	
0,6	5	2	6500	165	4400000	1,8622	267	
0,6	5	2	6500	170	4300000	0,4599	281	
0,6	5	2	6500	180	4300000	2,0119	225	
0,6	5	2	6500	190	4300000	2,6803	214	
0,6	5	2	6500	200	4300000	4,0462	255	
0,6	5	2	6500	220	4300000	4,6315	212	
0,6	5	2	6500	240	4300000	5,1881	500	
0,6	5	2	7000	220	4300000	4,6357	236	
0,6	5	2	8000	220	4300000	4,5808	207	
0,6	5	2	9000	220	4300000	3,981	176	0,1378
0,6	5	2	9000	260	4600000	4,2554	171	0,138
0,75	5	2	9000	260	4600000	3,4086	201	
0,75	5	2	10000	260	4600000	4,8433	199	0,138
0,85	5	2	10000	260	4600000	4,2092	203	
0,85	5	2	12000	260	4600000	5,3963	500	
0,85	5	2	10000	270	4600000	3,9706	205	
0,85	5	2	10000	270	4700000	4,6818	233	
0,85	5	2	10000	300	4700000	6,2583	500	
0,85	5	2	15000	260	4800000	2,2041	200	0,1379
1	5	2	15000	260	4800000	3,3707	261	
1	5	2	18000	260	4800000	2,2717	224	
1	5	2	22000	260	4800000	2,7755	230	
1	5	2	18000	280	4800000	3,3294	207	
1	5	2	20000	280	4800000	3,5124	241	
1	5	2	14000	280	4800000	4,6263	255	
1	5	2	18000	290	4800000	3,9235	215	
1	5	2	18000	300	4800000	3,4015	222	
1	5	2	19000	290	4800000	3,0314	212	
1	5	2	22000	290	4800000	3,1311	226	
1	5	2	20000	290	4800000	3,4846	210	
1	5	2	21000	290	4800000	3,3361	222	
1	5	2	21500	290	4900000	3,5444	196	0,1378
1,25	5	2	21500	290	4900000	3,4385	198	0,1375
0,125	10	2	3400	90	4000000	1,1452	170	0,1379
0,125	10	2	3400	90	4000000	0,5453	176	0,1375
0,25	10	2	3400	90	4000000	0	330	
0,25	10	2	4000	90	4000000	0	172	
0,25	10	2	4000	110	4000000	1,5834	172	0,1375
0,35	10	2	4000	110	4000000	1,9073	291	
0,35	10	2	4500	110	4000000	1,7972	227	
0,35	10	2	5000	110	4000000	1,6358	261	

0,35	10	2	4500	120	4000000	1,2702	208	
0,35	10	2	5000	120	4000000	1,0419	176	0,1377
0,5	10	2	5000	120	4000000	2,2345	297	
0,5	10	2	6000	120	4000000	1,7449	276	
0,5	10	2	5500	120	4000000	1,8351	306	
0,5	10	2	5000	120	4100000	1,3743	326	
0,5	10	2	7000	120	4000000	1,6511	243	
0,5	10	2	9000	120	4000000	1,6192	179	0,1375
0,6	10	2	9000	120	4000000	0,257	240	
0,6	10	2	12000	120	4000000	0,2317	245	
0,6	10	2	14000	120	4000000	0,5	261	
0,6	10	2	9000	130	4000000	0,1868	236	
0,6	10	2	9000	140	4000000	0,2744	214	
0,6	10	2	12000	140	4000000	1,5537	177	0,1375
0,75	10	2	12000	140	4000000	2,0419	296	
0,75	10	2	12000	150	4000000	2,6273	240	
0,75	10	2	12000	160	4000000	3,8636	242	
0,75	10	2	14000	160	4000000	1,0358	231	
0,75	10	2	16000	160	4000000	2,6134	236	
0,75	10	2	14000	165	4000000	2,1606	201	
0,75	10	2	15000	165	4000000	1,3505	205	
0,75	10	2	14000	166	4000000	2,5577	235	
0,75	10	2	14000	165	4100000	1,6537	217	
0,75	10	2	14000	165	4150000	2,4529	270	
0,75	10	2	155000	165	4150000	2,4563	227	
0,75	10	2	165000	165	4150000	2,2562	196	0,1378
0,85	10	2	165000	165	4150000	2,0493	261	
0,85	10	2	165000	165	4200000	0,771	233	
0,85	10	2	180000	165	4200000	2,4952	280	
0,85	10	2	165000	165	4250000	0,1836	277	
0,85	10	2	165000	170	4250000	1,6116	242	
0,85	10	2	180000	170	4250000	1,9818	257	
0,85	10	2	200000	170	4250000	1,8076	228	
0,85	10	2	250000	170	4250000	1,1823	213	
0,85	10	2	300000	170	4250000	1,9921	200	
0,85	10	2	350000	170	4250000	0,8293	171	0,1378
1	10	2	350000	170	4250000	0	196	
1	10	2	400000	170	4250000	0,1354	173	0,138
1,25	10	2	400000	170	4250000	0	236	
1,25	10	2	500000	170	4250000	0	242	
1,25	10	2	400000	175	4250000	0	297	
1,25	10	2	600000	180	4300000	0	193	
1,25	10	2	700000	180	4300000	0	166	
1,25	10	2	700000	182	4300000	0	170	
1,25	10	2	700000	182	4400000	0	170	
1,25	10	2	700000	183	4400000	0	171	
1,25	10	2	700000	184	4400000	0	166	
1,25	10	2	180000	170	4300000	0,9029	161	0,1376

0	15	2	3000	80	4000000	1,3441	174	0,1378
0,125	15	2	3000	80	4000000	0,3829	172	0,1379
0,25	15	2	3000	80	4000000	2,048	177	0,1375
0,35	15	2	3000	80	4000000	1,3747	299	
0,35	15	2	3500	80	4000000	0,7092	392	
0,35	15	2	4200	80	4000000	1,3038	240	
0,35	15	2	5000	80	4000000	1,1254	271	
0,35	15	2	4200	90	4000000	3,081	291	
0,35	15	2	4200	100	4000000	1,3442	207	
0,35	15	2	4500	100	4000000	2,8586	200	
0,35	15	2	4600	100	4000000	1,6698	201	
0,35	15	2	4800	100	4000000	1,8673	229	
0,35	15	2	4600	110	4000000	4,844	200	
0,35	15	2	4600	100	4000000	2,6459	235	
0,35	15	2	4600	100	4100000	1,6831	242	
0,35	15	2	4600	120	4100000	3,1943	177	0,1377
0,35	15	2	4600	120	4300000	2,7786	205	0,1372
0,35	15	2	4600	130	4300000	4,794	207	
0,5	15	2	4600	120	4100000	3,6122	244	
0,5	15	2	5000	120	4100000	3,777	227	
0,5	15	2	4600	130	4100000	3,7652	206	
0,5	15	2	5000	130	4100000	3,8596	244	
0,5	15	2	4600	140	4100000	4,3319	258	
0,5	15	2	5800	130	4100000	4,354	199	0,1375

APÊNDICE B

A Tabela 10 apresenta condições ambientais e seus respectivos ganhos PID que não participaram do treinamento da RNA. Estes valores foram utilizados para validar a generalização da rede.

U	V	Hs	Р		D	Мр	ts	Pitch
0,1	0	0,1	1900	40	4000000	0,992	157	0
0,2	0	0,1	1900	40	4000000	0,5296	159	0
0,125	2	0,1	1900	40	4000000	0,9827	158	0
0,75	3	0,1	3000	120	4000000	1,2801	180	0
0,9	4	0,1	11000	30	4000000	0,8532	181	0
0,1	0	1	3000	80	4000000	0,9537	161	0,069
0,2	0	1	3000	80	4000000	0,4307	161	0,0689
0,125	2	1	3000	80	4000000	0,7887	159	0,0686
0,75	3	1	10000	150	4000000	1,5845	176	0,0689
0,9	4	1	16000	150	4000000	0,9244	179	0,0688
0,1	0	2	3400	130	4000000	1,1793	174	0,1377
0,2	0	2	3600	130	4000000	1,893	177	0,1376
0,125	2	2	3600	130	4000000	1,3303	168	0,1378
0,75	3	2	10000	260	4600000	3,1226	196	0,1379
0.9	4	2	22000	260	4800000	1.2493	173	0.1379

Tabela 10 - Novas simulações resultantes do SPD utilizadas para comprovar a eficiência da RNA